GOLD COAST GEOSERVICES, INC.

Engineering Geologic and Geotechnical Consultants

June 5, 2020
File No. GC18-092902

LARRY MOSLER

OJAI QUARRY
15558 Maricopa Highway
Ojai, CA

SUBJECT: Updated Stability Analysis for Ojai Quarry, Mine ID \#91-56-0025, Ojai, County of Ventura.

Dear Mr. Mosler:
In accordance with your request, and as required in a letter issued by the State of California Department of Conservation Division of Mine Reclamation, this report was prepared to provide baseline geologic and geotechnical conditions for the entire project area in the proposed Reclamation Plan Amendment (RPA) for the Ojai Quarry. The scope of work in preparation of this report included the following:

1. Site meetings with the quarry operator, Larry Mosler, to observe and review quarry operations and to review the proposed RPA provided by Jensen Design \& Survey.
2. Review of previous geologic and geotechnical reports for the Ojai Quarry, prepared by Norfleet Consultants.
3. Review of pertinent geologic and geotechnical maps and documents for use in evaluation of slope design analysis and recommendations for the RPA.
4. Slope stability analysis to determine the static and pseudo-static (seismic) safety factors for the slope design for the RPA by Jensen Design \& Survey.

5251 Ver | County of Ventura |
| :---: |
| Planning Commission Hearing |
| Case No. PL18-0136 |
| Exhibit 3d - Slope Stability Analysis |

DISCUSSION OF RPA

The RPA prepared by Jensen Design \& Survey (see Appendix III with this report) proposes expanded mining limits that extend north-northeasterly from the mining limits that were evaluated by Norfleet Consultants in a report dated December 5, 2011. The cross-sections by Jensen Design \& Survey (see Appendix III) show the proposed slope configurations within the expanded mining limits area and including the slope configurations within the lower current mining area. The RPA proposes $1 \mathrm{~h}: \mathrm{v} 1$ slope configurations, with maximum proposed slope height of 30 feet and intervening 10 feet wide benches. The RPA area has a maximum total slope relief of about 560 feet.

GEOLOGIC SETTING

The Ojai Quarry is located within Matilija Canyon in the southeast part of the Topatopa Mountains. The rock material within the quarry consists of light-colored sandstone and light to dark-colored siltstone, assigned to the Matilija Formation or Matilija Sandstone of marine origin and Eocene age. The geology of the Ojai Quarry is discussed in detail in the Norfleet report (2011), and the reader is therefore referred to that report for a thorough and detailed geologic discussion and analysis of the site conditions (see Appendix II).

The geologic conditions within the RPA are essentially the same as those discussed in the Norfleet report (2011). Norfleet subdivided the Matilija sandstone into three domains or geomechanical units (GMU's), as shown on the Geotechnical Map with this report. The rock domains or GMU's per Norfleet extend into the RPA to the north of the area mapped by Norfleet, as shown on the Geotechnical Map. The rock types are separated by very high angle, essentially vertical to overturned bedding structure across the quarry. Jointing planes are typically high angle, commonly developed parallel or subparallel to bedding. No daylighted bedding or daylighted jointing plane conditions are anticipated.

STABILITY ANALYSIS

In the detailed slope stability analysis of the Ojai Quarry design slopes as previously performed by Norfleet Consultants (see Appendix II), the Matilija Sandstone was separated into 3 predominant rock types, identified as Domain A, Domain B, and Domain C.

The rockmass exposed in the quarry slopes varies from GOOD to VERY GOOD rock quality.

Uniaxial compressive rock strength varies from MEDIUM STRONG to VERY STRONG (Domains B and C), and from STRONG to EXTREMELY STRONG (Domain A sandstone).

Rock structure is classified as varying from BLOCKY to VERY BLOCKY.

The Matilija Sandstone varies from INTACT to STRONGLY JOINTED. Jointing surfaces vary from widely spaced to close. Most jointing surfaces are classified as varying from FAIR (smooth, moderately weathered and altered) to VERY GOOD (very rough, fresh unweathered surfaces).

From the laboratory test data and rock characterization, the following rockmass properties were determined by Norfleet for Domain A sandstone:

Intact rock strength (sigma ci) $=2,000 \mathrm{Ksf}$ (from uniaxial compression tests)
Hoek-Brown constant (mi) $=17 \pm 5$
Geological Strength Index (GSI) $=40$ to 50
Mohr-Coulomb fit for sandstone: cohesion $=11$ to 26 Ksf and friction angle $=45^{\circ}-51^{\circ}$
Mohr-Coulomb fit for siltstone: cohesion $=2.1$ to 4 Ksf and friction angle $=18^{\circ}-30^{\circ}$

The GSI was estimated using charts from Hoek (2008).

ROCK SLOPE STABILITY ANALYSIS

The attached slope stability analysis has been performed using shear strength parameters as previously reported by Norfleet Consultants for Domain A and B. The shear strengths are based on the Hoek-Brown Criterion and the Geologic Strength Index, and are considered to be reasonable from an engineering geologic standpoint.

Stability data printout sheets generated using GSTABL are presented in Appendix I. Adequate factors of safety against slope failure were determined for all cases, assuming circular failure mode for all cases. Shear strength parameters determined from the HoekBrown Criterion and Geological Strength Index and as previously reported by Norfleet Consultants were used in the analysis, and are considered to be acceptable for the rock conditions at this quarry.

ROCKFALL

As noted in the report by Norfleet Consultants, rocks will occasionally fall from working slopes and finished rock slopes. The proposed benches between the proposed 1:1 cut slopes are intended to mitigate the rockfall hazard potential by effectively reducing the potential for rocks to roll beyond the benches.

CONCLUSIONS

The results of the stability analysis indicate that the mining reclamation plan slopes will possess adequate safety factors against large-scale slope failure under static conditions and in the event of an earthquake. It is noted that the geologic conditions at this quarry are characterized as geologically complex, so that it is recommended that excavations be evaluated annually (or more frequently if mining operations become accelerated) by the engineering geologist, to verify the continuity of the geologic conditions that are anticipated in the analysis, and to provide updated analysis and recommendations if conditions are encountered that are found to differ from those discussed in this report.

REMARKS

Please call this office at (805) 484-5070 if you have any questions regarding this report.

Respectfully submitted,
GOLD COAST GEOSERVICES, INC.

REFERENCES CITED

Hoek, E. and Brown, E.T., 1980a, Underground excavations in rock, London: Institution of Mining and Metallurgy.

Hoek, E., and Bray, J., (1981), Rock slope engineering, London: Institution of Mining and Metalurgy, London.

Hoek, E., Caranza-Torres, CT, Corcum, B. (2002), Hoek-Brown failure criterion- 2002 edition. In: Bawden HRW, Curran J., Telsenicki, M. (eds), Proceedings of the North American Rock Mechanics Society (NARMS-TAC 2002) Mining Innovation and Technology, Toronto, pp 267-273.

Hoek, E. (2008), Course notes entitled Practical Rock Engineering.

Norfleet Consultants, Slope Stability Study For the Ojai Quarry Reclamation Plan, Ojai, CA, dated 12/5/2011.

Norfleet Consultants, Supplemental Slope Stability Review for the Ojai Quarry, Ojai, CA, dated 6/18/2015.

Norfleet Consultants, Geologic/Slope Review, Ojai Quarry, Ojai, CA, dated 01/15/2018.

Rocscience (2007), Roclab, v. 1.031, Computer software for analysis of rock mass strength.

APPENDIX I

SLOPE STABILITY ANALYSIS DATA SHEETS

```
*** GSTABL7 ***
    ** GSTABL7 by Dr. Garry H. Gregory, Ph.D.,P.E.,D.GE **
    ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 **
    (All Rights Reserved-Unauthorized Use Prohibited)
```

 SLOPE STABILITY ANALYSIS SYSTEM
 Modified Bishop, Simplified Janbu, or GLE Method of Slices.
(Includes Spencer \& Morgenstern-Price Type Analysis)
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
Surfaces, Pseudo-Static \& Newmark Earthquake, and Applied Forces.
Analysis Run Date: 6/1/2020
Time of Run: 01:47PM
Run By: IM
Input Data Filename: C:\Users\Project Files \Slope Stability\18-092902
(OJAI QUARRY) \Section $T-4$, circular failure, static.in
Output Filename: C:\Users\Project Files\Slope Stability\18-092902
(OJAI QUARRY) \Section $T-4$, circular failure, static.OUT
Unit System: English
Plotted Output Filename: C:\Users\Project Files\Slope Stability\18-092902
(OJAI QUARRY) \Section $T-4$, circular failure, static.PLT

PROBLEM DESCRIPTION: 15558 Maricopa Hwy, Ojai: Section T-4 Circular, Static

BOUNDARY COORDINATES
11 Top Boundaries
11 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	0.00	70.00	50.00	45.00	1
2	50.00	45.00	85.00	50.00	1

```
\begin{tabular}{rrrrr}
85.00 & 50.00 & 110.00 & 90.00 & 1 \\
110.00 & 90.00 & 140.00 & 90.00 & 1 \\
140.00 & 90.00 & 220.00 & 150.00 & 1 \\
220.00 & 150.00 & 340.00 & 150.00 & 1 \\
340.00 & 150.00 & 1247.00 & 845.00 & 1 \\
1247.00 & 845.00 & 1257.00 & 845.00 & 1 \\
1257.00 & 845.00 & 1260.00 & 860.00 & 1 \\
1260.00 & 860.00 & 1390.00 & 900.00 & 1 \\
1390.00 & 900.00 & 1550.00 & 930.00 & 1
\end{tabular}
Default Y-Origin = 0.00(ft)
Default X-Plus Value = 0.00(ft)
Default Y-Plus Value = 0.00(ft)
ISOTROPIC SOIL PARAMETERS
```

```
Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.
* * Safety Factors Are Calculated By The Simplified Janbu Method * *
Total Number of Trial Surfaces Attempted = 1000
Number of Failed Attempts to Generate Trial Surface = 9
Number of Trial Surfaces With Valid FS = 991
Percentage of Trial Surfaces With Non-Valid FS Solutions
of the Total Attempted = 0.9 %
Statistical Data On All Valid FS Values:
    FS Max = 119.249 FS Min = 3.447 FS Ave = 8.639
    Standard Deviation = 7.816 Coefficient of Variation = 90.47 %
```

Failure Surface Specified By 53 Coordinate Points

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	340.000	150.000
2	369.935	148.026
3	399.911	146.820
4	429.908	146.383
5	459.906	146.716
6	489.885	147.819
7	519.827	149.690
8	549.711	152.328
9	579.517	155.732
10	609.226	159.900
11	638.819	164.828
12	668.275	170.513
13	697.576	176.952
14	726.702	184.141
15	755.634	192.074
16	784.353	200.747
17	812.840	210.154
18	841.076	220.288
19	869.044	231.143
20	896.723	242.712
21	924.097	254.987
22	951.147	267.960
23	977.855	281.623
24	1004.204	295.966

25	1030.176	310.981
26	1055.755	326.657
27	1080.923	342.983
28	1105.665	359.950
29	1129.962	377.546
30	1153.801	395.759
31	1177.164	414.578
32	1200.038	433.990
33	1222.405	453.982
34	1244.253	474.541
35	1265.566	495.654
36	1286.330	517.307
37	1306.532	539.485
38	1326.159	562.174
39	1345.198	585.359
40	1363.635	609.025
41	1381.459	633.155
42	1398.659	657.736
43	1415.222	682.749
44	1431.138	708.178
45	1446.397	734.008
46	1460.988	760.221
47	1474.902	786.799
48	1488.130	813.725
49	1500.663	840.982
50	1512.492	868.551
51	1523.610	896.415
52	1534.011	924.554
53	1534.901	927.169

```
Factor of Safety
*** 3.447 ***
```

Individual data on the 56 slices

			Water Force	Water Force	Tie Force	Tie Force	Earthq For	ake e Su	charge
Slice No.	Width (ft)	$\begin{gathered} \text { Weight } \\ \text { (lbs) } \end{gathered}$	$\begin{aligned} & \text { Top } \\ & \text { (lbs) } \end{aligned}$	Bot (l.bs)	Norm (l.bs)	$\begin{gathered} \operatorname{Tan} \\ (\mathrm{lbs}) \end{gathered}$	$\begin{aligned} & \text { Hor } \\ & \text { (libs) } \end{aligned}$	$\begin{aligned} & \text { Ver } \\ & \text { (llbs) } \end{aligned}$	Load (lbs)
1	29.9	55931.1	0.0	0.0	0	0.	0.0	0.0	0.0
2	30.0	166365.0	0.0	0.0	0	0.	0.0	0.0	0.0
3	30.0	273563.9	0.0	0.0	0	0.	0.0	0.0	0.0
4	30.0	377239.1	0.0	0.0	0	0.	0.0	0.0	0.0
5	30.0	477117.6	0.0	0.0	0	0.	0.0	0.0	0.0
6	29.9	572942.1	0.0	0.0	0	0 .	0.0	0.0	0.0
7	29.9	664474.2	0.0	0.0	0	0 .	0.0	0.0	0.0
8	29.8	751489.5	0.0	0.0	0	0.	0.0	0.0	0.0
9	29.7	833784.2	0.0	0.0	0	0.	0.0	0.0	0.0

29.6	911176.3	0.0	0.0	0 .	0 .	0.0	0.0	0.0
29.5	983495.9	0.0	0.0	0 .	0 .	0.0	0.0	0.0
29.3	1050600.4	0.0	0.0	0 .	0 .	0.0	0.0	0.0
29.1	1112361.5	0.0	0.0	0 .	0 .	0.0	0.0	0.0
28.9	1168674.2	0.0	0.0	0 .	0 .	0.0	0.0	0.0
28.7	1219452.8	0.0	0.0	0 .	0 .	0.0	0.0	0.0
28.5	1264634.5	0.0	0.0	0 .	0 .	0.0	0.0	0.0
28.2	1304171.5	0.0	0.0	0 .	0 .	0.0	0.0	0.0
28.0	1338045.1	0.0	0.0	0 .	0 .	0.0	0.0	0.0
27.7	1366250.2	0.0	0.0	0.	0 .	0.0	0.0	0.0
27.4	1388808.8	0.0	0.0	0.	0.	0.0	0.0	0.0
27.0	1405759.9	0.0	0.0	0 .	0.	0.0	0.0	0.0
26.7	1417165.8	0.0	0.0	0 .	0 .	0.0	0.0	0.0
26.3	1423101.4	0.0	0.0	0 .	0 .	0.0	0.0	0.0
26.0	1423674.9	0.0	0.0	0 .	0 .	0.0	0.0	0.0
25.6	1418996.2	0.0	0.0	0 .	0 .	0.0	0.0	0.0
25.2	1409215.2	0.0	0.0	0 .	0 .	0.0	0.0	0.0
24.7	1394492.1	0.0	0.0	0 .	0 .	0.0	0.0	0.0
24.3	1374995.9	0.0	0.0	0 .	0 .	0.0	0.0	0.0
23.8	1350925.2	0.0	0.0	0 .	0.	0.0	0.0	0.0
23.4	1322496.4	0.0	0.0	0 .	0 .	0.0	0.0	0.0
22.9	1289934.2	0.0	0.0	0 .	0 .	0.0	0.0	0.0
22.4	1253479.1	0.0	0.0	0.	0	0.0	0.0	0.0
21.8	1213399.6	0.0	0.0	0 .	0 .	0.0	0.0	0.0
2.7	151663.8	0.0	0.0	0 .	0 .	0.0	0.0	0.0
10.0	544176.5	0.0	0.0	0 .	0 .	0.0	0.0	0.0
3.0	163730.4	0.0	0.0	0 .	0 .	0.0	0.0	0.0
5.6	307197.6	0.0	0.0	0 .	0 .	0.0	0.0	0.0
20.8	1116377.4	0.0	0.0	0 .	0 .	0.0	0.0	0.0
20.2	1038842.3	0.0	0.0	0 .	0 .	0.0	0.0	0.0
19.6	961240.7	0.0	0.0	0 .	0 .	0.0	0.0	0.0
19.0	883909.2	0.0	0.0	0 .	0 .	0.0	0.0	0.0
18.4	807167.9	0.0	0.0	0 .	0 .	0.0	0.0	0.0
17.8	731344.8	0.0	0.0	0 .	0 .	0.0	0.0	0.0
8.5	332361.5	0.0	0.0	0 .	0 .	0.0	0.0	0.0
8.7	323739.4	0.0	0.0	0 .	0 .	0.0	0.0	0.0
16.6	578721.5	0.0	0.0	0 .	0 .	0.0	0.0	0.0
15.9	503171.3	0.0	0.0	0 .	0 .	0.0	0.0	0.0
15.3	430413.8	0.0	0.0	0 .	0 .	0.0	0.0	0.0
14.6	360755.7	0.0	0.0	0 .	0 .	0.0	0.0	0.0
13.9	294501.7	0.0	0.0	0 .	0 .	0.0	0.0	0.0
13.2	231943.8	0.0	0.0	0 .	0 .	0.0	0.0	0.0
12.5	173366.5	0.0	0.0	0 .	0 .	0.0	0.0	0.0
11.8	119048.8	0.0	0.0	0 .	0 .	0.0	0.0	0.0
11.1	69256.7	0.0	0.0	0.	0 .	0.0	0.0	0.0
10.4	24246.6	0.0	0.0	0 .	0 .	0.0	0.0	0.0
0.9	163.5	0.0	0.0	0 .	0 .	0.0	0.0	0.0

Failure Surface Specified By 52 Coordinate Points

Point
No.

X-Surf
(ft)
(ft)

1	358.586	164.242
2	388.459	161.482
3	418.394	159.517
4	448.371	158.348
5	478.369	157.976
6	508.366	158.401
7	538.341	159.623
8	568.273	161.642
9	598.141	164.455
10	627.924	168.061
11	657.600	172.457
12	687.149	177.640
13	716.549	183.606
14	745.781	190.351
15	774.823	197.871
16	803.656	206.160
17	832.257	215.213
18	860.608	225.022
19	888.689	235.581
20	916.478	246.882
21	943.958	258.918
22	971.108	271.680
23	997.910	285.159
24	1024.344	299.345
25	1050.391	314.229
26	1076.034	329.800
27	1101.254	346.047
28	1126.033	362.958
29	1150.354	380.521
30	1174.200	398.725
31	1197.554	417.556
32	1220.399	437.001
33	1242.719	457.046
34	1264.499	477.677
35	1285.723	498.879
36	1306.376	520.638
37	1326.443	542.939
38	1345.911	565.764
39	1364.766	589.099
40	1382.993	612.927
41	1400.581	637.230
42	1417.517	661.993
43	1433.789	687.196
44	1449.385	712.823
45	1464.295	738.856
46	1478.508	765.276
47	1492.014	792.064
48	1504.803	819.201
49	1516.866	846.669
50	1528.196	874.447
51	1538.783	902.517
52	1548.206	929.664

```
    Factor of Safety
*** 3.465 ***
```

Failure Surface Specified By 52 Coordinate Points

Point No.	$\begin{gathered} X-S u r f \\ (f t) \end{gathered}$	$\begin{gathered} \text { Y-Surf } \\ (f t) \end{gathered}$
1	349.293	157.121
2	378.727	151.319
3	408.329	146.450
4	438.070	142.518
5	467.921	139.527
6	497.851	137.480
7	527.830	136.379
8	557.830	136.225
9	587.820	137.018
10	617.769	138.758
11	647.649	141.443
12	677.429	145.070
13	707.079	149.635
14	736.571	155.134
15	765.874	161.562
16	794.960	168.912
17	823.799	177.176
18	852.363	186.347
19	880.623	196.415
20	908.551	207.370
21	936.120	219.202
22	963.301	231.898
23	990.067	245.447
24	1016.392	259.833
25	1042.250	275.044
26	1067.615	291.063
27	1092.462	307.876
28	1116.765	325.464
29	1140.501	343.811
30	1163.645	362.899
31	1186.176	382.707
32	1208.069	403.218
33	1229.304	424.409
34	1249.860	446.260
35	1269.715	468.749
36	1288.850	491.854
37	1307.247	515.552
38	1324.885	539.819
39	1341.749	564.630
40	1357.821	589.962
41	1373.085	615.788

42	1387.526	642.084
43	1401.130	668.822
44	1413.883	695.977
45	1425.771	723.520
46	1436.785	751.426
47	1446.911	779.665
48	1456.141	808.210
49	1464.465	837.032
50	1471.875	866.102
51	1478.364	895.392
52	1482.504	917.344

```
    Factor of Safety
*** 3.486 ***
```

Failure Surface Specified By 51 Coordinate Points

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	340.000	150.000
2	369.736	146.027
3	399.579	142.965
4	429.502	140.816
5	459.477	139.583
6	489.475	139.267
7	519.469	139.868
8	549.431	141.385
9	579.332	143.817
10	609.145	147.162
11	638.842	151.417
12	668.394	156.577
13	697.776	162.638
14	726.958	169.594
15	755.914	177.439
16	784.617	186.166
17	813.040	195.765
18	841.156	206.229
19	868.939	217.547
20	896.363	229.709
21	923.403	242.704
22	950.032	256.519
23	976.228	271.141
24	1001.964	286.557
25	1027.216	302.753
26	1051.962	319.713
27	1076.178	337.421
28	1099.842	355.861
29	1122.931	375.016

30	1145.423	394.868
31	1167.299	415.397
32	1188.536	436.586
33	1209.116	458.414
34	1229.020	480.861
35	1248.228	503.905
36	1266.722	527.526
37	1284.487	551.701
38	1301.504	576.408
39	1317.757	601.624
40	1333.233	627.324
41	1347.916	653.485
42	1361.792	680.083
43	1374.849	707.093
44	1387.074	734.489
45	1398.457	762.245
46	1408.985	790.337
47	1418.650	818.738
48	1427.443	847.420
49	1435.355	876.358
50	1442.378	905.524
51	1443.312	909.996

```
    Factor of Safety
*** 3.495 ***
```

Failure Surface Specified By 51 Coordinate Points

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	367.879	171.362
2	397.487	166.528
3	427.228	162.598
4	457.076	159.577
5	487.001	157.466
6	516.977	156.269
7	546.976	155.986
8	576.969	156.617
9	606.930	158.162
10	636.829	160.620
11	666.639	163.987
12	696.333	168.262
13	725.883	173.440
14	755.261	179.516
15	784.441	186.484
16	813.394	194.339
17	842.095	203.072

18	870.516	212.676
19	898.631	223.142
20	926.414	234.460
21	953.840	246.620
22	980.881	259.609
23	1007.515	273.417
24	1033.715	288.030
25	1059.458	303.435
26	1084.719	319.618
27	1109.475	336.563
28	1133.704	354.254
29	1157.382	372.676
30	1180.487	391.810
31	1202.999	411.641
32	1224.895	432.148
33	1246.157	453.312
34	1266.763	475.115
35	1286.696	497.536
36	1305.935	520.555
37	1324.465	544.148
38	1342.266	568.296
39	1359.324	592.975
40	1375.621	618.162
41	1391.143	643.834
42	1405.875	669.968
43	1419.804	696.538
44	1432.917	723.521
45	1445.201	750.890
46	1456.645	778.622
47	1467.239	806.689
48	1476.972	835.066
49	1485.836	863.727
50	1493.823	892.644
51	1500.671	920.751

```
Factor of Safety
*** 3.498 ***
```

Failure Surface Specified By 50 Coordinate Points

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	349.293	157.121
2	379.211	154.909
3	409.180	153.543
4	439.176	153.022
5	469.174	153.348
6	499.151	154.520

7	529.083	156.537
8	558.946	159.398
9	588.717	163.100
10	618.372	167.640
11	647.886	173.015
12	677.237	179.221
13	706.402	186.252
14	735.356	194.103
15	764.078	202.767
16	792.543	212.238
17	820.730	222.509
18	848.617	233.571
19	876.180	245.415
20	903.398	258.031
21	930.249	271.411
22	956.712	285.543
23	982.766	300.415
24	1008.390	316.017
25	1033.563	332.335
26	1058.267	349.357
27	1082.480	367.069
28	1106.184	385.457
29	1129.360	404.506
30	1151.990	424.202
31	1174.054	444.528
32	1195.537	465.468
33	1216.420	487.006
34	1236.687	509.125
35	1256.323	531.807
36	1275.310	555.033
37	1293.635	578.786
38	1311.283	603.046
39	1328.239	627.795
40	1344.490	653.012
41	1360.024	678.677
42	1374.827	704.771
43	1388.888	731.271
44	1402.196	758.158
45	1414.741	785.409
46	1426.511	813.004
47	1437.499	840.919
48	1447.695	869.133
49	1457.090	897.624
50	1461.824	913.467

```
    Factor of Safety
*** 3.509 ***
```

Failure Surface Specified By 55 Coordinate Points

Point No.	$\begin{gathered} X-S u r f \\ (f t) \end{gathered}$	$\begin{gathered} \text { Y-Surf } \\ (\mathrm{ft}) \end{gathered}$
1	349.293	157.121
2	378.193	149.071
3	407.339	141.966
4	436.702	135.813
5	466.249	130.620
6	495.949	126.390
7	525.771	123.130
8	555.684	120.841
9	585.655	119.528
10	615.653	119.190
11	645.646	119.829
12	675.603	121.444
13	705.491	124.033
14	735.279	127.593
15	764.935	132.121
16	794.429	137.611
17	823.728	144.058
18	852.801	151.456
19	881.619	159.796
20	910.150	169.069
21	938.363	179.266
22	966.231	190.376
23	993.721	202.386
24	1020.807	215.286
25	1047.458	229.059
26	1073.646	243.693
27	1099.345	259.171
28	1124.526	275.478
29	1149.164	292.595
30	1173.231	310.505
31	1196.702	329.189
32	1219.553	348.627
33	1241.760	368.799
34	1263.298	389.682
35	1284.145	411.255
36	1304.279	433.495
37	1323.678	456.379
38	1342.322	479.882
39	1360.192	503.979
40	1377.268	528.645
41	1393.532	553.854
42	1408.967	579.579
43	1423.557	605.792
44	1437.286	632.466
45	1450.139	659.573
46	1462.104	687.084
47	1473.166	714.970
48	1483.316	743.201
49	1492.541	771.747
50	1500.832	800.579
51	1508.181	829.665

52	1514.579	858.975
53	1520.020	888.477
54	1524.497	918.141
55	1525.350	925.378

```
    Factor of Safety
*** 3.513 ***
```

Failure Surface Specified By 55 Coordinate Points

Point	X-Surf	
No.	(ft)	Y-Surf
		$($ ft $)$
1	340.000	150.000
2	368.743	141.407
3	397.756	133.774
4	427.006	127.109
5	456.461	121.418
6	486.090	116.710
7	515.858	112.988
8	545.733	110.257
9	575.683	108.519
10	605.674	107.778
11	635.673	108.033
12	665.646	109.284
13	695.562	111.530
14	725.387	114.768
15	755.088	118.996
16	784.631	124.207
17	813.986	130.397
18	843.119	137.559
19	871.997	145.684
20	900.590	154.764
21	928.866	164.788
22	956.793	175.747
23	984.340	187.627
24	1011.478	200.415
25	1038.176	214.097
26	1064.405	228.659
27	1090.136	244.084
28	1115.340	260.355
29	1139.990	277.454
30	1164.058	295.363
31	1187.519	314.061
32	1210.345	333.528
33	1232.512	353.743
34	1253.995	374.682
35	1274.771	396.324
36	1294.817	418.643

37	1314.110	441.617
38	1332.630	465.218
39	1350.355	489.422
40	1367.267	514.200
41	1383.346	539.527
42	1398.576	565.374
43	1412.938	591.713
44	1426.418	618.514
45	1439.000	645.748
46	1450.670	673.385
47	1461.416	701.394
48	1471.226	729.745
49	1480.089	758.406
50	1487.995	787.346
51	1494.935	816.532
52	1500.902	845.932
53	1505.889	875.515
54	1509.891	905.247
55	1511.664	922.812

```
    Factor of Safety
*** 3.525 ***
```

Failure Surface Specified By 54 Coordinate Points

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	367.879	171.362
2	396.847	163.561
3	426.050	156.693
4	455.459	150.767
5	485.043	145.789
6	514.771	141.762
7	544.614	138.693
8	574.540	136.583
9	604.518	135.435
10	634.517	135.251
11	664.507	136.030
12	694.456	137.771
13	724.335	140.474
14	754.110	144.134
15	783.753	148.749
16	813.233	154.313
17	842.519	160.820
18	871.580	168.265
19	900.388	176.639
20	928.911	185.934

21	957.122	196.140
22	984.990	207.246
23	1012.488	219.242
24	1039.586	232.115
25	1066.256	245.850
26	1092.472	260.436
27	1118.206	275.855
28	1143.432	292.093
29	1168.123	309.133
30	1192.254	326.956
31	1215.801	345.546
32	1238.738	364.881
33	1261.043	384.944
34	1282.692	405.712
35	1303.663	427.165
36	1323.935	449.280
37	1343.485	472.034
38	1362.295	495.405
39	1380.345	519.367
40	1397.616	543.897
41	1414.091	568.969
42	1429.752	594.556
43	1444.583	620.634
44	1458.569	647.174
45	1471.696	674.150
46	1483.950	701.533
47	1495.318	729.296
48	1505.789	757.409
49	1515.352	785.844
50	1523.997	814.571
51	1531.715	843.562
52	1538.498	872.785
53	1544.339	902.211
54	1548.899	929.794

> Factor of Safety $* * * \quad 3.528 \quad * * *$

Failure Surface Specified By 51 Coordinate Points

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	367.879	171.362
2	397.874	170.799
3	427.873	170.971
4	457.859	171.877
5	487.814	173.517
6	517.720	175.891
7	547.559	178.996

8	577.313	182.831
9	606.964	187.394
10	636.494	192.682
11	665.886	198.691
12	695.122	205.419
13	724.185	212.861
14	753.056	221.012
15	781.719	229.868
16	810.157	239.423
17	838.352	249.672
18	866.287	260.608
19	893.947	272.225
20	921.313	284.517
21	948.370	297.475
22	975.102	311.091
23	1001.492	325.359
24	1027.525	340.268
25	1053.185	355.811
26	1078.456	371.977
27	1103.324	388.758
28	1127.774	406.142
29	1151.790	424.120
30	1175.359	442.681
31	1198.466	461.814
32	1221.098	481.507
33	1243.240	501.749
34	1264.880	522.526
35	1286.005	543.828
36	1306.601	565.640
37	1326.657	587.950
38	1346.161	610.745
39	1365.101	634.011
40	1383.465	657.734
41	1401.242	681.899
42	1418.422	706.492
43	1434.995	731.499
44	1450.951	756.905
45	1466.279	782.693
46	1480.971	808.849
47	1495.018	835.357
48	1508.411	862.202
49	1521.143	889.366
50	1533.206	916.834
51	1537.658	927.686

[^0]
15558 Maricopa Hwy, Ojai: Section T-4 Circular, Static


```
*** GSTABL7 ***
    ** GSTABL7 by Dr. Garry H. Gregory, Ph.D.,P.E.,D.GE **
    ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 **
    (All Rights Reserved-Unauthorized Use Prohibited)
```

Modified Bishop, Simplified Janbu, or GLE Method of Slices.
(Includes Spencer \& Morgenstern-Price Type Analysis)
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
Surfaces, Pseudo-Static \& Newmark Earthquake, and Applied Forces.
Analysis Run Date: 6/1/2020
Time of Run: 12:17PM
Run By: IM
Input Data Filename: C:\Users\Project Files \Slope Stability\18-092902
(OJAI QUARRY) \Section $T-5$, circular failure, static.in
Output Filename: C:\Users\Project Files\Slope Stability\18-092902
(OJAI QUARRY) \Section $T-5$, circular failure, static.OUT
Unit System: English
Plotted Output Filename: C:\Users\Project Files\Slope Stability\18-092902
(OJAI QUARRY) \Section T-5, circular failure, static.PLT
PROBLEM DESCRIPTION: 15558 Maricopa Hwy, Ojai: Section T5
Circular, Static

BOUNDARY COORDINATES

55 Top Boundaries
55 Total Boundaries

Boundary No.	X-Left $(f t)$	Y-Left $(f t)$	X-Right $(f t)$	Y-Right $(f t)$	Soil Type Below Bnd
1	0.00	60.00	50.00	40.00	1
2	50.00	40.00	90.00	60.00	1

3	90.00	60.00	100.00	80.00	1
4	100.00	80.00	125.00	80.00	1
5	125.00	80.00	220.00	150.00	1
6	220.00	150.00	330.00	150.00	1
7	330.00	150.00	375.00	195.00	1
8	375.00	195.00	385.00	215.00	1
9	385.00	215.00	425.00	235.00	1
10	425.00	235.00	440.00	235.00	1
11	440.00	235.00	465.00	265.00	1
12	465.00	265.00	475.00	265.00	1
13	475.00	265.00	505.00	295.00	1
14	505.00	295.00	515.00	295.00	1
15	515.00	295.00	525.00	305.00	1
16	525.00	305.00	535.00	305.00	1
17	535.00	305.00	565.00	335.00	1
18	565.00	335.00	575.00	335.00	1
19	575.00	335.00	605.00	365.00	1
20	605.00	365.00	615.00	365.00	1
21	615.00	365.00	645.00	395.00	1
22	645.00	395.00	655.00	395.00	1
23	655.00	395.00	685.00	425.00	1
24	685.00	425.00	695.00	425.00	1
25	695.00	425.00	725.00	455.00	1
26	725.00	455.00	735.00	455.00	1
27	735.00	455.00	765.00	485.00	1
28	765.00	485.00	775.00	485.00	1
29	775.00	485.00	805.00	515.00	1
30	805.00	515.00	815.00	515.00	1
31	815.00	515.00	845.00	545.00	1
32	845.00	545.00	855.00	545.00	1
33	855.00	545.00	885.00	575.00	1
34	885.00	575.00	895.00	575.00	1
35	895.00	575.00	925.00	605.00	1
36	925.00	605.00	935.00	605.00	1
37	935.00	605.00	965.00	635.00	1
38	965.00	635.00	975.00	635.00	1
39	975.00	635.00	1005.00	665.00	1
40	1005.00	665.00	1015.00	665.00	1
41	1015.00	665.00	1045.00	695.00	1
42	1045.00	695.00	1055.00	695.00	1
43	1055.00	695.00	1085.00	725.00	1
44	1085.00	725.00	1095.00	725.00	1
45	1095.00	725.00	1125.00	755.00	1
46	1125.00	755.00	1135.00	755.00	1
47	1135.00	755.00	1165.00	785.00	1
48	1165.00	785.00	1175.00	785.00	1
49	1175.00	785.00	1205.00	815.00	1
50	1205.00	815.00	1215.00	815.00	1
51	1215.00	815.00	1245.00	845.00	1
52	1245.00	845.00	1255.00	845.00	1
53	1255.00	845.00	1300.00	890.00	1
54	1300.00	890.00	1475.00	950.00	1
55	1475.00	950.00	1550.00	970.00	1

```
Default Y-Origin = 0.OO(ft)
Default X-Plus Value = 0.00(ft)
Default Y-Plus Value = 0.00(ft)
```


ISOTROPIC SOIL PARAMETERS

```
1 Type(s) of Soil
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Soil & Total & Saturated & Cohesion & Friction & Pore & Pressure & Piez \\
\hline Type No. & Unit Wt (pcf) & Unit Wt. (pcf) & Intercept (psf) & Angle (deg) & Pressure Param. & Constant (psf) & Surface No. \\
\hline 1 & 150.0 & 150.0 & 26000.0 & 45.0 & 0.00 & 0.0 & 0 \\
\hline
\end{tabular}
A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.
1000 Trial Surfaces Have Been Generated.
10 Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced Along The Ground Surface Between X = 330.00(ft) and \(X=1300.00(f t)\)
Each Surface Terminates Between X =1305.00(ft) and \(X=1550.00(f t)\)
Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is \(Y=0.00\) (ft)
30.00(ft) Line Segments Define Each Trial Failure Surface.
```

Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Simplified Janbu Method * *

Total Number of Trial Surfaces Attempted = 1000

```
Number of Failed Attempts to Generate Trial Surface = 19
Number of Trial Surfaces With Valid FS = 981
Percentage of Trial Surfaces With Non-Valid FS Solutions
of the Total Attempted = 1.9 %
Statistical Data On All Valid FS Values:
    FS Max = 131.410 FS Min = 3.474 FS Ave = 8.040
    Standard Deviation = 8.266 Coefficient of Variation = 102.82 %
```

Failure Surface Specified By 56 Coordinate Points
Point X-Surf Y-Surf
No.
(ft)
(ft)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

$\begin{gathered} X-\operatorname{Surf} \\ (f t) \end{gathered}$	$\begin{gathered} \text { Y-Surf } \\ (\mathrm{ft}) \end{gathered}$
330.000	150.000
359.123	142.801
388.460	136.525
417.979	131.179
447.653	126.767
477.451	123.294
507.345	120.763
537.303	119.178
567.296	118.539
597.294	118.847
627.268	120.103
657.187	122.304
687.022	125.448
716.743	129.533
746.319	134.554
775.723	140.506
804.924	147.384
833.893	155.180
862.602	163.886
891.022	173.495
919.124	183.996
946.880	195.380
974.263	207.633
1001.246	220.745
1027.802	234.703
1053.903	249.492
1079.525	265.098
1104.641	281.504
1129.226	298.696
1153.257	316.655
1176.709	335.363
1199.558	354.803
1221.782	374.955
1243.359	395.798
1264.267	417.312

36	1284.486	439.475
37	1303.995	462.266
38	1322.774	485.661
39	1340.806	509.637
40	1358.072	534.171
41	1374.554	559.237
42	1390.237	584.811
43	1405.105	610.868
44	1419.142	637.381
45	1432.336	664.324
46	1444.672	691.671
47	1456.139	719.393
48	1466.725	747.463
49	1476.420	775.853
50	1485.213	804.535
51	1493.097	833.481
52	1500.062	862.661
53	1506.104	892.047
54	1511.214	921.608
55	1515.388	951.316
56	1516.444	961.052

Factor of Safety
*** 3.474 ***

Individual data on the 103 slices

Slice No.	Width (ft)	$\begin{gathered} \text { Weight } \\ \text { (lbs) } \end{gathered}$	Water Force Top (l.bs)	Water Force Bot (lbs)	Tie Force Norm (lbs)	Tie Force Tan (l.bs)	Earthquake Force		Surcharge
							$\begin{gathered} \text { Hor } \\ \text { (l.bs) } \end{gathered}$	$\begin{aligned} & \text { Ver } \\ & \text { (lbs) } \end{aligned}$	Load (llbs)
1	29.1	79337.3	0.0	0.0	0	0	0.0	0.0	0.0
2	15.9	109450.2	0.0	0.0	0	0	0.0	0.0	0.0
3	10.0	99997.5	0.0	0.0	0	0	0.0	0.0	0.0
4	3.5	40981.2	0.0	0.0	0	0	0.0	0.0	0.0
5	29.5	399657.7	0.0	0.0	0	0	0.0	0.0	0.0
6	7.0	108035.0	0.0	0.0	0	0	0.0	0.0	0.0
7	15.0	238455.6	0.0	0.0	0	0	0.0	0.0	0.0
8	7.7	128867.4	0.0	0.0	0	0	0.0	0.0	0.0
9	17.3	335234.7	0.0	0.0	0	0	0.0	0.0	0.0
10	10.0	211256.7	0.0	0.0	0	0	0.0	0.0	0.0
11	2.5	52506.6	0.0	0.0	0	0	0.0	0.0	0.0
12	27.5	657437.1	0.0	0.0	0	0	0.0	0.0	0.0
13	2.3	61241.7	0.0	0.0	0	0	0.0	0.0	0.0
14	7.7	200311.0	0.0	0.0	0	0	0.0	0.0	0.0
15	10.0	269859.7	0.0	0.0	0	0	0.0	0.0	0.0
16	10.0	278153.5	0.0	0.0	0	0	0.0	0.0	0.0
17	2.3	64559.8	0.0	0.0	0	0	0.0	0.0	0.0

27.7	840344.4	0.0	0.0	0.	0.	0.0	0.0	0.0
2.3	74537.4	0.0	0.0	0.	0.	0.0	0.0	0.0
7.7	250099.9	0.0	0.0	0.	0.	0.0	0.0	0.0
22.3	760507.0	0.0	0.0	0.	0.	0.0	0.0	0.0
7.7	279876.5	0.0	0.0	0.	0.	0.0	0.0	0.0
10.0	368430.8	0.0	0.0	0.	0.	0.0	0.0	0.0
12.3	462423.2	0.0	0.0	0.	0.	0.0	0.0	0.0
17.7	705852.9	0.0	0.0	0.	0.	0.0	0.0	0.0
10.0	409837.7	0.0	0.0	0.	0.	0.0	0.0	0.0
2.2	89851.2	0.0	0.0	0.	0.	0.0	0.0	0.0
27.8	1198694.5	0.0	0.0	0.	0.	0.0	0.0	0.0
2.0	90885.2	0.0	0.0	0.	0.	0.0	0.0	0.0
8.0	357819.0	0.0	0.0	0.	0.	0.0	0.0	0.0
21.7	1003963.2	0.0	0.0	0.	0.	0.0	0.0	0.0
8.3	397144.3	0.0	0.0	0.	0.	0.0	0.0	0.0
10.0	484825.0	0.0	0.0	0.	0.	0.0	0.0	0.0
11.3	555332.8	0.0	0.0	0.	0.	0.0	0.0	0.0
18.7	950508.6	0.0	0.0	0.	0.	0.0	0.0	0.0
10.0	518478.8	0.0	0.0	0.	0.	0.0	0.0	0.0
0.7	37408.7	0.0	0.0	0.	0.	0.0	0.0	0.0
29.2	1560991.4	0.0	0.0	0.	0.	0.0	0.0	0.0
0.1	4189.7	0.0	0.0	0.	0.	0.0	0.0	0.0
10.0	549375.5	0.0	0.0	0.	0.	0.0	0.0	0.0
18.9	1053706.0	0.0	0.0	0.	0.	0.0	0.0	0.0
11.1	637384.2	0.0	0.0	0.	0.	0.0	0.0	0.0
10.0	577403.2	0.0	0.0	0.	0.	0.0	0.0	0.0
7.6	440235.6	0.0	0.0	0.	0.	0.0	0.0	0.0
22.4	1330868.9	0.0	0.0	0.	0.	0.0	0.0	0.0
6.0	363575.1	0.0	0.0	0.	0.	0.0	0.0	0.0
4.0	239158.0	0.0	0.0	0.	0.	0.0	0.0	0.0
24.1	1474821.8	0.0	0.0	0.	0.	0.0	0.0	0.0
5.9	367442.3	0.0	0.0	0.	0.	0.0	0.0	0.0
10.0	624814.8	0.0	0.0	0.	0.	0.0	0.0	0.0
11.9	744881.8	0.0	0.0	0.	0.	0.0	0.0	0.0
18.1	1159232.1	0.0	0.0	0.	0.	0.0	0.0	0.0
9.3	596716.0	0.0	0.0	0.	0.	0.0	0.0	0.0
0.7	47194.3	0.0	0.0	0.	0.	0.0	0.0	0.0
26.2	1707667.2	0.0	0.0	0.	0.	0.0	0.0	0.0
3.8	248529.0	0.0	0.0	0.	0.	0.0	0.0	0.0
10.0	659480.3	0.0	0.0	0.	0.	0.0	0.0	0.0
12.8	845027.2	0.0	0.0	0 .	0.	0.0	0.0	0.0
17.2	1152700.4	0.0	0.0	0.	0.	0.0	0.0	0.0
8.9	598327.2	0.0	0.0	0 .	0.	0.0	0.0	0.0
1.1	73248.3	0.0	0.0	0.	0.	0.0	0.0	0.0
24.5	1654066.4	0.0	0.0	0.	0.	0.0	0.0	0.0
5.5	374001.3	0.0	0.0	0.	0.	0.0	0.0	0.0
10.0	679589.4	0.0	0.0	0.	0.	0.0	0.0	0.0
9.6	652868.9	0.0	0.0	0.	0.	0.0	0.0	0.0
20.4	1393177.9	0.0	0.0	0.	0.	0.0	0.0	0.0
4.2	290218.2	0.0	0.0	0.	0.	0.0	0.0	0.0
5.8	393306.6	0.0	0.0	0.	0 .	0.0	0.0	0.0
18.3	1244117.6	0.0	0.0	0.	0.	0.0	0.0	0.0
11.7	806368.3	0.0	0.0	0.	0.	0.0	0.0	0.0
10.0	682482.7	0.0	0.0	0.	0.	0.0	0.0	0.0

72	1.7	115640.5	0.0	0.0	0.	0.	0.0	0.0	0.0
73	22.8	1552785.8	0.0	0.0	0.	0.	0.0	0.0	0.0
74	5.4	371416.3	0.0	0.0	0.	0.	0.0	0.0	0.0
75	10.0	676092.9	0.0	0.0	0.	0.	0.0	0.0	0.0
76	6.8	454259.2	0.0	0.0	0.	0.	0.0	0.0	0.0
77	21.6	1447360.6	0.0	0.0	0.	0.	0.0	0.0	0.0
78	1.6	110144.4	0.0	0.0	0.	0.	0.0	0.0	0.0
79	10.0	663553.4	0.0	0.0	0.	0.	0.0	0.0	0.0
80	9.3	607606.6	0.0	0.0	0.	0.	0.0	0.0	0.0
81	20.2	1322239.4	0.0	0.0	0.	0.	0.0	0.0	0.0
82	15.5	1009279.6	0.0	0.0	0.	0.	0.0	0.0	0.0
83	4.0	258112.4	0.0	0.0	0.	0.	0.0	0.0	0.0
84	18.8	1184873.9	0.0	0.0	0.	0.	0.0	0.0	0.0
85	18.0	1090689.0	0.0	0.0	0.	0.	0.0	0.0	0.0
86	17.3	997210.6	0.0	0.0	0.	0.	0.0	0.0	0.0
87	16.5	904970.8	0.0	0.0	0.	0.	0.0	0.0	0.0
88	15.7	814471.2	0.0	0.0	0.	0.	0.0	0.0	0.0
89	14.9	726242.8	0.0	0.0	0.	0.	0.0	0.0	0.0
90	14.0	640783.1	0.0	0.0	0.	0.	0.0	0.0	0.0
91	13.2	558599.5	0.0	0.0	0.	0.	0.0	0.0	0.0
92	12.3	480176.3	0.0	0.0	0.	0.	0.0	0.0	0.0
93	11.5	405990.9	0.0	0.0	0.	0.	0.0	0.0	0.0
94	10.6	336510.8	0.0	0.0	0.	0.	0.0	0.0	0.0
95	8.3	234593.3	0.0	0.0	0.	0.	0.0	0.0	0.0
96	1.4	37571.1	0.0	0.0	0.	0.	0.0	0.0	0.0
97	8.8	212832.5	0.0	0.0	0.	0.	0.0	0.0	0.0
98	7.9	159365.5	0.0	0.0	0.	0.	0.0	0.0	0.0
99	7.0	112513.8	0.0	0.0	0.	0.	0.0	0.0	0.0
100	6.0	72614.4	0.0	0.0	0.	0.	0.0	0.0	0.0
101	5.1	39974.3	0.0	0.0	0.	0.	0.0	0.0	0.0
102	4.2	14872.5	0.0	0.0	0.	0.	0.0	0.0	0.0
103	1.1	748.5	0.0	0.0	0.	0.	0.0	0.0	0.0

Failure Surface Specified By 53 Coordinate Points

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	339.798	159.798
2	369.602	156.370
3	399.491	153.799
4	429.442	152.087
5	459.430	151.234
6	489.430	151.243
7	519.417	152.113
8	549.368	153.843
9	579.256	156.431
10	609.057	159.876
11	638.748	164.175
12	668.302	169.325
13	697.697	175.320
14	726.908	182.156
15	755.910	189.828

16	784.681	198.329
17	813.195	207.652
18	841.431	217.789
19	869.364	228.732
20	896.971	240.473
21	924.230	253.001
22	951.118	266.306
23	977.613	280.377
24	1003.694	295.203
25	1029.338	310.771
26	1054.526	327.068
27	1079.235	344.082
28	1103.445	361.797
29	1127.138	380.200
30	1150.292	399.276
31	1172.890	419.008
32	1194.912	439.380
33	1216.340	460.376
34	1237.157	481.978
35	1257.345	504.169
36	1276.889	526.930
37	1295.771	550.242
38	1313.976	574.087
39	1331.490	598.444
40	1348.298	623.294
41	1364.385	648.615
42	1379.739	674.388
43	1394.347	700.591
44	1408.198	727.203
45	1421.279	754.201
46	1433.579	781.563
47	1445.090	809.267
48	1455.801	837.290
49	1465.703	865.608
50	1474.788	894.200
51	1483.050	923.040
52	1490.480	952.105
53	1490.965	954.257

[^1]Failure Surface Specified By 51 Coordinate Points

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	330.000	150.000
2	359.928	147.922
3	389.902	146.682

4	419.900	146.281
5	449.896	146.718
6	479.869	147.994
7	509.795	150.108
8	539.649	153.057
9	569.410	156.840
10	599.053	161.454
11	628.556	166.895
12	657.894	173.158
13	687.047	180.240
14	715.990	188.133
15	744.700	196.833
16	773.157	206.333
17	801.336	216.624
18	829.217	227.699
19	856.777	239.549
20	883.996	252.166
21	910.850	265.538
22	937.321	279.656
23	963.386	294.509
24	989.026	310.085
25	1014.220	326.371
26	1038.949	343.356
27	1063.193	361.025
28	1086.934	379.365
29	1110.153	398.362
30	1132.832	418.001
31	1154.953	438.266
32	1176.498	459.142
33	1197.451	480.612
34	1217.796	502.660
35	1237.516	525.267
36	1256.597	548.418
37	1275.022	572.092
38	1292.779	596.273
39	1309.852	620.941
40	1326.229	646.076
41	1341.897	671.660
42	1356.844	697.671
43	1371.057	724.091
44	1384.526	750.897
45	1397.240	778.070
46	1409.190	805.587
47	1420.365	833.428
48	1430.758	861.570
49	1440.359	889.992
50	1449.162	918.672
51	1456.029	943.496

[^2]Failure Surface Specified By 52 Coordinate Points

Point No.	$\begin{gathered} X-S u r f \\ (f t) \end{gathered}$	$\begin{gathered} \text { Y-Surf } \\ (f t) \end{gathered}$
1	359.394	179.394
2	389.393	179.163
3	419.389	179.650
4	449.365	180.855
5	479.303	182.776
6	509.187	185.413
7	538.999	188.765
8	568.723	192.829
9	598.341	197.603
10	627.836	203.084
11	657.191	209.270
12	686.390	216.156
13	715.416	223.739
14	744.252	232.014
15	772.882	240.977
16	801.289	250.622
17	829.457	260.944
18	857.370	271.938
19	885.013	283.596
20	912.368	295.912
21	939.421	308.879
22	966.155	322.490
23	992.557	336.736
24	1018.610	351.611
25	1044.299	367.104
26	1069.611	383.208
27	1094.530	399.912
28	1119.042	417.208
29	1143.133	435.086
30	1166.790	453.535
31	1189.998	472.545
32	1212.745	492.104
33	1235.017	512.203
34	1256.802	532.828
35	1278.088	553.969
36	1298.861	575.613
37	1319.110	597.748
38	1338.824	620.362
39	1357.992	643.440
40	1376.601	666.971
41	1394.643	690.940
42	1412.105	715.333
43	1428.979	740.138
44	1445.255	765.339
45	1460.922	790.923
46	1475.974	816.874
47	1490.399	843.178
48	1504.192	869.819

49	1517.343	896.783
50	1529.845	924.054
51	1541.691	951.616
52	1548.965	969.724

```
Factor of Safety
*** 3.557 ***
```

Failure Surface Specified By 51 Coordinate Points

Point	X-Surf No.	Y-Surf $(f t)$
1	339.798	159.798
2	369.653	156.856
3	399.583	154.801
4	429.560	153.636
5	459.559	153.361
6	489.553	153.976
7	519.515	155.481
8	549.419	157.875
9	579.239	161.155
10	608.949	165.319
11	638.522	170.363
12	667.932	176.283
13	697.154	183.072
14	726.161	190.726
15	754.928	199.238
16	783.430	208.599
17	811.642	218.803
18	839.538	229.839
19	867.094	241.698
20	894.286	254.370
21	921.091	267.844
22	947.483	282.107
23	973.441	297.147
24	998.940	312.951
25	1023.960	329.505
26	1048.477	346.794
27	1072.470	364.803
28	1095.918	383.516
29	1118.801	402.917
30	1141.097	422.989
31	1162.788	443.714
32	1183.854	465.073
33	1204.277	487.048
34	1224.039	509.619
35	1243.122	532.767
36	1261.510	556.471
37	1279.186	580.711
12		

38	1296.135	605.464
39	1312.341	630.710
40	1327.792	656.426
41	1342.472	682.588
42	1356.369	709.175
43	1369.471	736.163
44	1381.767	763.528
45	1393.244	791.245
46	1403.894	819.291
47	1413.707	847.641
48	1422.674	876.270
49	1430.788	905.152
50	1438.041	934.262
51	1438.762	937.576

```
Factor of Safety
*** 3.565 ***
```

Failure Surface Specified By 56 Coordinate Points

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	349.596	169.596
2	378.290	160.841
3	407.262	153.054
4	436.479	146.244
5	465.908	140.420
6	495.516	135.588
7	525.270	131.752
8	555.136	128.918
9	585.080	127.089
10	615.069	126.266
11	645.068	126.451
12	675.044	127.643
13	704.964	129.842
14	734.792	133.044
15	764.497	137.246
16	794.043	142.443
17	823.398	148.630
18	852.529	155.799
19	881.402	163.943
20	909.986	173.051
21	938.248	183.114
22	966.156	194.121
23	993.678	206.059
24	1020.784	218.915
25	1047.443	232.674
26	1073.625	247.320

27	1099.300	262.837
28	1124.440	279.208
29	1149.015	296.414
30	1172.999	314.436
31	1196.364	333.253
32	1219.084	352.844
33	1241.133	373.187
34	1262.486	394.259
35	1283.120	416.036
36	1303.011	438.494
37	1322.136	461.608
38	1340.474	485.350
39	1358.004	509.695
40	1374.707	534.616
41	1390.563	560.083
42	1405.556	586.068
43	1419.667	612.542
44	1432.880	639.475
45	1445.182	666.837
46	1456.558	694.596
47	1466.995	722.722
48	1476.482	751.183
49	1485.008	779.946
50	1492.563	808.979
51	1499.138	838.250
52	1504.727	867.724
53	1509.322	897.370
54	1512.920	927.154
55	1515.515	957.041
56	1515.717	960.858

```
    Factor of Safety
*** 3.569 ***
```

Failure Surface Specified By 52 Coordinate Points

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	388.788	216.894
2	418.375	211.935
3	448.097	207.861
4	477.928	204.674
5	507.840	202.378
6	537.807	200.974
7	567.802	200.464
8	597.800	200.848
9	627.773	202.126
10	657.694	204.297
11	687.537	207.358
12	717.276	211.308

```
13 746.884 216.142
14 776.335 221.856
15 805.602 228.446
16 834.660 235.905
17 863.483 244.227
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4 1
42
4 3
4 4
4 5
46
4 7
4 8
49
50
5 1
52
        892.045 253.404
        920.321 263.428
        948.285 274.290
        975.913 285.981
        1003.181 298.490
        1030.063 311.807
        1056.537 325.918
        1082.579 340.813
        1108.165 356.477
        1133.272 372.896
        1157.880 390.057
        1181.965 407.943
        1205.506 426.539
        1228.482 445.828
        1250.874 465.794
        1272.660 486.418
        1293.822 507.682
        1314.341 529.568
        1334.198 552.055
        1353.377 575.124
        1371.859 598.755
        1389.629 622.926
        1406.671 647.615
        1422.969 672.802
        1438.509 698.463
        1453.278 724.576
        1467.262 751.118
        1480.448 778.064
        1492.826 805.392
        1504.384 833.076
        1515.111 861.092
        1524.999 889.416
        1534.038 918.022
        1542.221 946.885
        1547.894 969.439
    Factor of Safety
Failure Surface Specified By 59 Coordinate Points
Point X-Surf Y-Surf
    No.
    (ft)
    (ft)
```

1	330.000	150.000
2	358.175	139.696
3	386.679	130.340
4	415.479	121.942
5	444.545	114.512
6	473.842	108.058
7	503.339	102.587
8	533.002	98.104
9	562.799	94.617
10	592.695	92.127
11	622.658	90.638
12	652.654	90.152
13	682.650	90.669
14	712.612	92.188
15	742.505	94.708
16	772.298	98.226
17	801.957	102.739
18	831.448	108.240
19	860.739	114.724
20	889.797	122.184
21	918.589	130.611
22	947.083	139.996
23	975.248	150.329
24	1003.051	161.597
25	1030.462	173.788
26	1057.450	186.890
27	1083.985	200.886
28	1110.038	215.761
29	1135.578	231.499
30	1160.578	248.082
31	1185.010	265.492
32	1208.846	283.708
33	1232.059	302.712
34	1254.625	322.481
35	1276.516	342.993
36	1297.710	364.225
37	1318.182	386.155
38	1337.910	408.756
39	1356.870	432.005
40	1375.043	455.874
41	1392.408	480.338
42	1408.945	505.368
43	1424.637	530.937
44	1439.464	557.017
45	1453.411	583.578
46	1466.463	610.590
47	1478.604	638.023
48	1489.821	665.847
49	1500.102	694.031
50	1509.435	722.542
51	1517.809	751.350
52	1525.215	780.421
53	1531.646	809.724
54	1537.093	839.225

55	1541.551	868.892
56	1545.015	898.691
57	1547.480	928.590
58	1548.944	958.554
59	1549.117	969.764

[^3]Failure Surface Specified By 51 Coordinate Points

Point No.	$\begin{gathered} X-\operatorname{Surf} \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \text { Y-Surf } \\ (f t) \end{gathered}$
1	359.394	179.394
2	388.944	174.217
3	418.645	169.992
4	448.466	166.721
5	478.377	164.410
6	508.346	163.059
7	538.344	162.671
8	568.338	163.245
9	598.299	164.782
10	628.195	167.279
11	657.995	170.735
12	687.669	175.145
13	717.187	180.505
14	746.517	186.809
15	775.629	194.052
16	804.495	202.224
17	833.083	211.319
18	861.364	221.327
19	889.310	232.237
20	916.892	244.038
21	944.080	256.718
22	970.848	270.265
23	997.167	284.663
24	1023.010	299.898
25	1048.351	315.955
26	1073.164	332.817
27	1097.423	350.466
28	1121.104	368.885
29	1144.181	388.054
30	1166.630	407.953
31	1188.430	428.563
32	1209.557	449.862
33	1229.990	471.828
34	1249.708	494.438
35	1268.689	517.670
36	1286.916	541.498

37	1304.368	565.899
38	1321.029	590.848
39	1336.880	616.318
40	1351.906	642.284
41	1366.090	668.719
42	1379.419	695.595
43	1391.879	722.885
44	1403.457	750.561
45	1414.141	778.594
46	1423.919	806.956
47	1432.782	835.617
48	1440.721	864.547
49	1447.728	893.718
50	1453.795	923.098
51	1457.411	943.969

```
    Factor of Safety
*** 3.581 ***
```

Failure Surface Specified By 58 Coordinate Points

Point No.	X-Surf $(f t)$	Y-Surf $(f t)$
1	330.000	150.000
2	358.276	139.977
3	386.875	130.914
4	415.763	122.823
5	444.908	115.711
6	474.276	109.587
7	503.834	104.459
8	533.549	100.332
9	563.386	97.210
10	593.312	95.098
11	623.292	93.997
12	653.291	93.909
13	683.277	94.834
14	713.215	96.771
15	743.069	99.718
16	772.808	103.672
17	802.396	108.627
18	831.800	114.578
19	860.986	121.519
20	889.921	129.442
21	918.572	138.337
22	946.906	148.194
23	974.891	159.002
24	1002.496	170.750
25	1029.688	183.422

26	1056.436	197.006
27	1082.711	211.485
28	1108.482	226.843
29	1133.719	243.062
30	1158.395	260.124
31	1182.480	278.010
32	1205.948	296.699
33	1228.771	316.169
34	1250.924	336.399
35	1272.381	357.366
36	1293.117	379.045
37	1313.110	401.412
38	1332.337	424.441
39	1350.774	448.107
40	1368.403	472.381
41	1385.201	497.237
42	1401.151	522.646
43	1416.233	548.579
44	1430.432	575.006
45	1443.729	601.898
46	1456.112	629.223
47	1467.564	656.951
48	1478.074	685.050
49	1487.629	713.488
50	1496.218	742.232
51	1503.832	771.250
52	1510.461	800.508
53	1516.099	829.973
54	1520.739	859.612
55	1524.375	889.391
56	1527.004	919.276
57	1528.622	949.232
58	1528.928	964.381

[^4]
15558 Maricopa Hwy, Ojai: Section T5 Circular, Static

GSTABL7 v. 2 FSmin=3.474
Safety Factors Are Calculated By The Simplified Janbu Method

```
*** GSTABL7 ***
    ** GSTABL7 by Dr. Garry H. Gregory, Ph.D.,P.E.,D.GE **
    ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 **
    (All Rights Reserved-Unauthorized Use Prohibited)
```

 SLOPE STABILITY ANALYSIS SYSTEM
 Modified Bishop, Simplified Janbu, or GLE Method of Slices.
(Includes Spencer \& Morgenstern-Price Type Analysis)
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
Surfaces, Pseudo-Static \& Newmark Earthquake, and Applied Forces.

```
    Analysis Run Date: 6/1/2020
    Time of Run: 02:23PM
    Run By: IM
    Input Data Filename: C:\Users\Project Files\Slope Stability\18-092902
    OJAI QUARRY)\Section T-6, circular failure, static.in
        Output Filename: C:\Users\Project Files\Slope Stability\18-092902
    (OJAI QUARRY)\Section T-6, circular failure, static.OUT
        Unit System: English
        Plotted Output Filename: C:\Users\Project Files\Slope Stability\18-092902
        (OJAI QUARRY)\Section T-6, circular failure, static.PLT
```

 PROBLEM DESCRIPTION: 15558 Maricopa Hwy, Ojai: Section T-6
 Circular, Static
 BOUNDARY COORDINATES

16 Top Boundaries
16 Total Boundaries

Boundary No.	X-Left (ft)	Y-Left (ft)	X-Right (ft)	Y-Right (ft)	Soil Type Below Bnd
1	0.00	50.00	40.00	40.00	1
2	40.00	40.00	65.00	40.00	1

3	65.00	40.00	90.00	70.00	1
4	90.00	70.00	112.00	70.00	1
5	112.00	70.00	215.00	150.00	1
6	215.00	150.00	335.00	150.00	1
7	335.00	150.00	375.00	215.00	1
8	375.00	215.00	410.00	235.00	1
9	410.00	235.00	500.00	245.00	1
10	500.00	245.00	540.00	310.00	1
11	540.00	310.00	640.00	400.00	1
12	640.00	400.00	675.00	405.00	1
13	675.00	405.00	740.00	485.00	1
14	740.00	485.00	785.00	485.00	1
15	785.00	485.00	1295.00	895.00	1
16	1295.00	895.00	1550.00	980.00	1
Default Y-Origin $=0.00$ (ft)					
Default X-Plus Value $=0.00$ (ft)					
Default Y-Plus Value $=0.00$ (ft)					

ISOTROPIC SOIL PARAMETERS

1 Type(s) of Soil

Soil	Total	Saturated	Cohesion	Friction	Pore	Pressure	Piez
Type No.	Unit Wt (pcf)	Unit Wt. (pcf)	$\begin{gathered} \text { Intercept } \\ \text { (psf) } \end{gathered}$	Angle (deg)	Pressure Param.	Constant (psf)	Surface No.
1	150.0	150.0	26000.0	45.0	0.00	0.0	0

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified.

1000 Trial Surfaces Have Been Generated.

10 Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced Along The Ground Surface Between $X=300.00$ (ft) and $X=1290.00$ (ft)

Each Surface Terminates Between X =1300.00(ft)
and $X=1550.00(f t)$

Unless Further Limitations Were Imposed, The Minimum Elevation

```
At Which A Surface Extends Is Y = 0.00(ft)
50.00(ft) Line Segments Define Each Trial Failure Surface.
```

Following Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Attempted = 1000
Number of Failed Attempts to Generate Trial Surface = 32
Number of Trial Surfaces With Valid FS $=968$
Percentage of Trial Surfaces With Non-Valid FS Solutions
of the Total Attempted $=3.2 \%$
Statistical Data On All Valid FS Values:
FS Max $=66.727$ FS Min $=3.616 \quad$ FS Ave $=7.692$
Standard Deviation $=6.044$ Coefficient of Variation $=78.57 \%$
Failure Surface Specified By 34 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	$(f t)$

 \(1330.000 \quad 150.000\)
 \(2 \quad 379.418 \quad 142.394\)
 \(3 \quad 429.141 \quad 137.141\)
 \(4 \quad 479.058 \quad 134.251\)
 \(\begin{array}{lll}5 & 529.055 & 133.731 \\ 6 & 579.021 & 135.583\end{array}\)
 \(\begin{array}{lll}6 & 579.021 & 135.583 \\ 7 & 628.842 & 139.802\end{array}\)
 \(\begin{array}{lll}8 & 678.408 & 146.379\end{array}\)
 \(9 \quad 727.606 \quad 155.299\)
 \(10 \quad 776.325 \quad 166.542\)
 \(11 \quad 824.457 \quad 180.083\)
 \(12 \quad 871.892 \quad 195.891\)
 \(13 \quad 918.525 \quad 213.930\)
 \(14 \quad 964.249 \quad 234.161\)
 \(\begin{array}{lll}15 & 1008.963 & 256.537\end{array}\)
 \(16 \quad 1052.565 \quad 281.008\)
 \(17 \quad 1094.958 \quad 307.519\)
    ```
\begin{tabular}{lll}
18 & 1136.046 & 336.011 \\
19 & 1175.736 & 366.419 \\
20 & 1213.940 & 398.675 \\
21 & 1250.572 & 432.707 \\
22 & 1285.548 & 468.437 \\
23 & 1318.791 & 505.786 \\
24 & 1350.225 & 544.669 \\
25 & 1379.780 & 584.999 \\
26 & 1407.389 & 626.685 \\
27 & 1432.990 & 669.633 \\
28 & 1456.526 & 713.748 \\
29 & 1477.944 & 758.928 \\
30 & 1497.195 & 805.074 \\
31 & 1514.236 & 852.080 \\
32 & 1529.029 & 899.842 \\
33 & 1541.540 & 948.251 \\
34 & 1548.020 & 979.340
\end{tabular}
Circle Center At \(X=515.111\); \(Y=1187.234\); and Radius \(=1053.623\)
```

```
Factor of Safety
```

*** 3.616 ***

Individual data on the 43 slices

| | | | Water Force | Water Force | Tie Force | Tie Force | Earthqu For | ake Sur | charge |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slice No. | Width
 (ft) | Weight
 (lbs) | $\begin{aligned} & \text { Top } \\ & \text { (libs) } \end{aligned}$ | $\begin{aligned} & \text { Bot } \\ & \text { (libs) } \end{aligned}$ | Norm
 (l.bs) | $\begin{gathered} \text { Tan } \\ \text { (libs) } \end{gathered}$ | $\begin{gathered} \text { Hor } \\ \text { (l.bs) } \end{gathered}$ | $\begin{aligned} & \text { Ver } \\ & \text { (llbs) } \end{aligned}$ | Load
 (lbs) |
| 1 | 5.0 | 288.6 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 2 | 40.0 | 218085.8 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 3 | 4.4 | 48728.7 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 4 | 30.6 | 392137.5 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 5 | 19.1 | 281124.4 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 6 | 49.9 | 780226.5 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 7 | 20.9 | 344588.1 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 8 | 29.1 | 587167.7 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 9 | 10.9 | 274455.7 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 10 | 39.0 | 1127892.6 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 11 | 49.8 | 1717696.2 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 12 | 11.2 | 425835.4 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 13 | 35.0 | 1359200.5 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 14 | 3.4 | 133393.1 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 15 | 49.2 | 2130004.8 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 16 | 12.4 | 596116.6 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 17 | 36.3 | 1758053.8 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 18 | 8.7 | 412787.6 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 19 | 39.5 | 1931384.5 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |

| | | 47.4 | 2474708.5 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 |
| ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 21 | 46.6 | 2578924.8 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 22 | 45.7 | 2652090.8 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 23 | 44.7 | 2694402.5 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 24 | 43.6 | 2706407.8 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 25 | 42.4 | 2689049.0 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 26 | 41.1 | 2643589.2 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 27 | 39.7 | 2571662.8 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 28 | 38.2 | 2475219.8 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 29 | 36.6 | 2356499.8 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 30 | 35.0 | 2218041.8 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 31 | 9.5 | 591867.6 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 32 | 23.8 | 1450791.5 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 33 | 31.4 | 1805620.5 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 34 | 29.6 | 1567151.0 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 35 | 27.6 | 1333607.5 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 36 | 25.6 | 1108174.2 | 0.0 | 0.0 | 0. | 0.0 | 0.0 | 0.0 | 0.0 |
| 37 | 23.5 | 893999.6 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 38 | 21.4 | 694167.4 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 39 | 19.3 | 511659.3 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 40 | 17.0 | 349331.1 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 41 | 14.8 | 209874.0 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 42 | 12.5 | 95803.5 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |
| 43 | 6.5 | 14058.5 | 0.0 | 0.0 | 0. | 0. | 0.0 | 0.0 | 0.0 |

Failure Surface Specified By 34 Coordinate Points

| Point
 No. | X-Surf
 $($ ft $)$ | Y-Surf
 $(f t)$ |
| ---: | ---: | :--- |
| | | |
| 1 | 320.000 | 150.000 |
| 2 | 369.193 | 141.055 |
| 3 | 418.768 | 134.550 |
| 4 | 468.604 | 130.500 |
| 5 | 518.579 | 128.914 |
| 6 | 568.571 | 129.798 |
| 7 | 618.459 | 133.148 |
| 8 | 668.120 | 138.956 |
| 9 | 717.435 | 147.209 |
| 10 | 766.281 | 157.885 |
| 11 | 814.541 | 170.960 |
| 12 | 862.097 | 186.401 |
| 13 | 908.833 | 204.171 |
| 14 | 954.635 | 224.226 |
| 15 | 999.391 | 246.518 |
| 16 | 1042.992 | 270.991 |
| 17 | 1085.332 | 297.587 |
| 18 | 1126.307 | 326.240 |
| 19 | 1165.818 | 356.881 |
| 20 | 1203.769 | 389.435 |
| 21 | 1240.066 | 423.823 |
| 22 | 1274.622 | 459.960 |
| 23 | 1307.351 | 497.759 |

```
    24 1338.175 537.128
    25 1367.018 577.970
    26 1393.810 620.186
    27 1418.486 663.673
    28 1440.985 708.325
    29 1461.252 754.033
    30 1479.238 800.686
    31 1494.900 848.170
    32 1508.199 896.369
    33 1519.102 945.166
    34 1523.582 971.194
Circle Center At X = 525.793 ; Y = 1140.991 ; and Radius = 1012.133
    Factor of Safety
```

Failure Surface Specified By 33 Coordinate Points

| Point
 No. | X-Surf
 $($ ft $)$ | Y-Surf
 $(f t)$ |
| ---: | :---: | :---: |
| 1 | 310.000 | 150.000 |
| 2 | 359.780 | 145.320 |
| 3 | 409.722 | 142.912 |
| 4 | 459.722 | 142.781 |
| 5 | 509.676 | 144.928 |
| 6 | 559.480 | 149.349 |
| 7 | 609.031 | 156.033 |
| 8 | 658.227 | 164.968 |
| 9 | 706.964 | 176.135 |
| 10 | 755.142 | 189.510 |
| 11 | 802.660 | 205.065 |
| 12 | 849.421 | 222.769 |
| 13 | 895.327 | 242.585 |
| 14 | 940.282 | 264.472 |
| 15 | 984.194 | 288.383 |
| 16 | 1026.971 | 314.270 |
| 17 | 1068.524 | 342.079 |
| 18 | 1108.768 | 371.751 |
| 19 | 1147.618 | 403.226 |
| 20 | 1184.994 | 436.438 |
| 21 | 1220.818 | 471.318 |
| 22 | 1255.016 | 507.794 |
| 23 | 1287.518 | 545.790 |
| 24 | 1318.254 | 585.226 |
| 25 | 1347.163 | 626.022 |
| 26 | 1374.183 | 668.093 |
| 27 | 1399.258 | 711.350 |

Failure Surface Specified By 34 Coordinate Points

| Point
 No. | X-Surf
 $($ ft $)$ | Y-Surf
 $(f t)$ |
| ---: | :---: | :---: |
| | | |
| 1 | 310.000 | 150.000 |
| 2 | 359.401 | 142.287 |
| 3 | 409.119 | 136.979 |
| 4 | 459.035 | 134.090 |
| 5 | 509.033 | 133.625 |
| 6 | 558.995 | 135.587 |
| 7 | 608.802 | 139.970 |
| 8 | 658.339 | 146.764 |
| 9 | 707.487 | 155.953 |
| 10 | 756.131 | 167.516 |
| 11 | 804.158 | 181.425 |
| 12 | 851.453 | 197.647 |
| 13 | 897.906 | 216.145 |
| 14 | 943.406 | 236.874 |
| 15 | 987.847 | 259.787 |
| 16 | 1031.125 | 284.828 |
| 17 | 1073.136 | 311.939 |
| 18 | 1113.783 | 341.057 |
| 19 | 1152.970 | 372.112 |
| 20 | 1190.604 | 405.031 |
| 21 | 1226.596 | 439.738 |
| 22 | 1260.863 | 476.149 |
| 23 | 1293.323 | 514.180 |
| 24 | 1323.899 | 553.741 |
| 25 | 1352.521 | 594.739 |
| 26 | 1379.120 | 637.077 |
| 27 | 1403.633 | 680.656 |
| 28 | 1426.004 | 725.372 |
| 29 | 1446.179 | 771.121 |
| 30 | 1464.111 | 817.795 |
| 31 | 1479.758 | 865.283 |
| 32 | 1493.082 | 913.475 |

```
    33 1504.053 962.257
    34 1504.502 964.834
Circle Center At X = 493.626 ; Y = 1163.769 ; and Radius = 1030.265
    Factor of Safety
*** 3.658 ***
```

Failure Surface Specified By 34 Coordinate Points

| Point No. | $\begin{gathered} X-\operatorname{Surf} \\ (f t) \end{gathered}$ | $\begin{gathered} Y-S u r f \\ (f t) \end{gathered}$ |
| :---: | :---: | :---: |
| 1 | 340.000 | 158.125 |
| 2 | 389.087 | 148.612 |
| 3 | 438.589 | 141.574 |
| 4 | 488.382 | 137.029 |
| 5 | 538.340 | 134.987 |
| 6 | 588.338 | 135.454 |
| 7 | 638.249 | 138.430 |
| 8 | 687.949 | 143.905 |
| 9 | 737.311 | 151.868 |
| 10 | 786.211 | 162.297 |
| 11 | 834.526 | 175.166 |
| 12 | 882.135 | 190.443 |
| 13 | 928.918 | 208.090 |
| 14 | 974.756 | 228.061 |
| 15 | 1019.534 | 250.307 |
| 16 | 1063.140 | 274.772 |
| 17 | 1105.464 | 301.394 |
| 18 | 1146.398 | 330.105 |
| 19 | 1185.841 | 360.834 |
| 20 | 1223.692 | 393.504 |
| 21 | 1259.856 | 428.031 |
| 22 | 1294.243 | 464.330 |
| 23 | 1326.765 | 502.307 |
| 24 | 1357.340 | 541.869 |
| 25 | 1385.893 | 582.915 |
| 26 | 1412.350 | 625.342 |
| 27 | 1436.645 | 669.043 |
| 28 | 1458.716 | 713.907 |
| 29 | 1478.509 | 759.823 |
| 30 | 1495.974 | 806.674 |
| 31 | 1511.066 | 854.342 |
| 32 | 1523.747 | 902.707 |
| 33 | 1533.986 | 951.647 |
| 34 | 1537.807 | 975.936 |

```
    Factor of Safety
*** 3.666 ***
```

Failure Surface Specified By 32 Coordinate Points

| Point
 No. | X-Surf
 $($ ft $)$ | Y-Surf
 $(f t)$ |
| :---: | :---: | :---: |
| | | |
| 1 | 340.000 | 158.125 |
| 2 | 389.965 | 159.984 |
| 3 | 439.820 | 163.788 |
| 4 | 489.490 | 169.532 |
| 5 | 538.897 | 177.206 |
| 6 | 587.968 | 186.800 |
| 7 | 636.628 | 198.298 |
| 8 | 684.803 | 211.684 |
| 9 | 732.420 | 226.936 |
| 10 | 779.406 | 244.032 |
| 11 | 825.691 | 262.946 |
| 12 | 871.204 | 283.649 |
| 13 | 915.875 | 306.109 |
| 14 | 959.637 | 330.292 |
| 15 | 1002.424 | 356.163 |
| 16 | 1044.171 | 383.681 |
| 17 | 1084.814 | 412.804 |
| 18 | 1124.291 | 443.489 |
| 19 | 1162.542 | 475.689 |
| 20 | 1199.510 | 509.354 |
| 21 | 1235.138 | 544.435 |
| 22 | 1269.373 | 580.876 |
| 23 | 1302.161 | 618.624 |
| 24 | 1333.454 | 657.621 |
| 25 | 1363.204 | 697.808 |
| 26 | 1391.365 | 739.123 |
| 27 | 1417.896 | 781.504 |
| 28 | 1442.755 | 824.886 |
| 29 | 1465.904 | 869.204 |
| 30 | 1487.310 | 914.391 |
| 31 | 1506.938 | 960.377 |
| 32 | 1509.242 | 966.414 |

Circle Center At $X=317.397$; $Y=1440.658$; and Radius $=1282.732$

```
    Factor of Safety
*** 3.696 ***
```

Failure Surface Specified By 33 Coordinate Points

```
Point X-Surf Y-Surf
    No.
        1
        2
        3
        4
        5
        6
        7
        8
        9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33 1548.230
        (ft)
        360.000 190.625
        409.653 184.747
        459.527 181.190
        509.511 179.959
        559.499 181.058
        609.382 184.486
        659.050 190.233
        708.397 198.288
        757.315 208.633
        805.698 221.246
        853.441 236.099
        900.440 253.161
        946.593 272.393
        991.800 293.755
        1035.963 317.200
        1078.985 342.677
        1120.774 370.130
        1161.239 399.501
        1200.291 430.724
        1237.846 463.734
        1273.823 498.457
        1308.143 534.818
        1340.731 572.739
        1371.518 612.136
        1400.436 652.926
        1427.422 695.018
        1452.417 738.322
        1475.368 782.743
        1496.225 828.185
        1514.942 874.550
        1531.479 921.736
        1545.799 969.641
        1548.230 979.410
Circle Center At X = 510.918 ; Y = 1252.906 ; and Radius = 1072.948
    Factor of Safety
*** 3.701 ***
```

Failure Surface Specified By 35 Coordinate Points
Point X-Surf Y-Surf
No.
(ft)
(ft)

```
        300.000 150.000
        348.357 137.288
        397.304 127.081
        446.711 119.405
        496.448 114.283
        546.383 111.726
        596.383 111.741
        646.316 114.330
        696.050 119.484
        745.452 127.190
        794.393 137.428
        842.742 150.170
        890.371 165.383
        937.155 183.027
        982.968 203.055
        1027.691 225.413
        1071.204 250.043
        1113.392 276.879
        1154.143 305.850
        1193.350 336.880
        1230.908 369.885
        1266.718 404.780
        1300.686 441.471
        1332.720 479.861
        1362.737 519.848
        1390.657 561.327
        1416.405 604.188
        1439.914 648.316
        1461.121 693.596
        1479.971 739.907
        1496.412 787.126
        1510.403 835.129
        1521.905 883.788
        1530.888 932.974
        1536.407 975.469
Circle Center At X = 571.079 ; Y = 1082.852 ; and Radius = 971.441
    Factor of Safety
*** 3.708 ***
```

Failure Surface Specified By 33 Coordinate Points

| Point
 No. | X-Surf
 $(f t)$ | Y-Surf
 $(f t)$ |
| :---: | :---: | :---: |
| | | |
| 1 | 330.000 | 150.000 |
| 2 | 379.017 | 140.132 |

```
        428.493 132.912
        478.285 128.363
        528.250 126.495
        578.244 127.316
        628.120 130.823
        677.737 137.005
        726.949 145.845
        775.615 157.317
        823.594 171.388
        870.748 188.018
        916.940 207.157
        962.036 228.752
        1005.906 252.739
        1048.424 279.049
        1089.467 307.607
        1128.915 338.328
        1166.655 371.126
        1202.578 405.905
        1236.580 442.564
        1268.562 480.997
        1298.432 521.094
        1326.105 562.738
        1351.499 605.810
        1374.541 650.184
        1395.166 695.732
        1413.312 742.323
        1428.928 789.821
        1441.969 838.091
        1452.397 886.991
        1460.181 936.382
        1461.639 950.546
Circle Center At X = 537.984 ; Y = 1056.421 ; and Radius = 929.977
    Factor of Safety
*** 3.715 ***
```

Failure Surface Specified By 33 Coordinate Points

| Point
 No. | X-Surf
 $(f t)$ | Y-Surf
 $(f t)$ |
| :---: | :---: | :---: |
| | | |
| 1 | 330.000 | 150.000 |
| 2 | 378.996 | 140.031 |
| 3 | 428.461 | 132.736 |
| 4 | 478.249 | 128.138 |
| 5 | 528.214 | 126.250 |
| 6 | 578.207 | 127.077 |
| 7 | 628.081 | 130.618 |

```
8 677.690 136.861
9 726.887 145.788
10 775.526 157.373
11 823.464 171.582
12 870.561 188.373
13 916.676 207.696
14 961.674 229.494
15 1005.423 253.704
16 1047.792 280.252
17 1088.657 309.062
1127.898 340.048
1165.399 373.119
1201.049 408.178
1234.743 445.120
1266.381 483.837
1295.871 524.215
1323.125 566.134
1348.063 609.471
1370.611 654.098
1390.703 699.883
1408.279 746.692
1423.288 794.386
1435.686 842.825
1445.435 891.865
1452.507 941.363
1453.063 947.688
Circle Center At X = 537.982 ; Y = 1046.779 ; and Radius = 920.581
    Factor of Safety
*** 3.725 ***
**** END OF GSTABL7 OUTPUT ****
```


15558 Maricopa Hwy, Ojai: Section T-6 Circular, Static

Safety Factors Are Calculated By The Modified Bishop Method

*** GSTABL7 ***

** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE **
** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited)

SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer \& Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static \& Newmark Earthquake, and Applied Forces.

```
    Analysis Run Date: 6/2/2020
    Time of Run: 09:18AM
    Run By: IM
    Input Data Filename: C:\Users\Project Files\Slope Stability\18-092902
    (OJAI QUARRY)\section a-1, circular failure, static.in
    Output Filename: C:\Users\Project Files\Slope Stability\18-092902
    OJAI QUARRY)\section a-1, circular failure, static.OUT
            Unit System: English
            Plotted Output Filename: C:\Users\Project Files\Slope Stability\18-092902
(OJAI QUARRY)\section a-1, circular failure, static.PLT
```

 PROBLEM DESCRIPTION: 15558 Maricopa Hwy, Ojai: Section A-1
 Circular, Static
 BOUNDARY COORDINATES
6 Top Boundaries
6 Total Boundaries

| Boundary
 No. | X-Left
 (ft) | Y-Left
 (ft) | X-Right
 (ft) | Y-Right
 (ft) | Soil Type
 Below Bnd |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.00 | 178.00 | 5.00 | 176.00 | 1 |
| 2 | 5.00 | 176.00 | 80.00 | 180.00 | 1 |

```
        3 80.00 180.00 260.00 320.00 1
        4 260.00 320.00 310.00 320.00 1
        5 310.00 320.00 540.00 500.00 1
        6 540.00 500.00 600.00 545.00 1
    Default Y-Origin = 0.00(ft)
    Default X-Plus Value = 0.00(ft)
    Default Y-Plus Value = 0.00(ft)
ISOTROPIC SOIL PARAMETERS
    1 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
    No. (pcf) (pcf) (psf) (deg) Param. (psf) No.
    1150.0 150.0 26000.0 45.0 0.00 0.0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
1000 Trial Surfaces Have Been Generated.
    1 0 \text { Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced}
Along The Ground Surface Between X = 80.00(ft)
                        and }X=535.00(ft
Each Surface Terminates Between X = 540.00(ft)
                        and X = 600.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
30.00(ft) Line Segments Define Each Trial Failure Surface.
```

* * Safety Factors Are Calculated By The Modified Bishop Method * *

```
Total Number of Trial Surfaces Attempted = 1000
Number of Trial Surfaces with Misleading FS = 1
Number of Failed Attempts to Generate Trial Surface = 49
Number of Trial Surfaces With Valid FS = 950
Percentage of Trial Surfaces With Non-Valid FS Solutions
of the Total Attempted = 5.0 %
Statistical Data On All Valid FS Values:
    FS Max = 437.843 FS Min = 6.452 FS Ave = 18.998
    Standard Deviation = 24.850 Coefficient of Variation = 130.80 %
Failure Surface Specified By 26 Coordinate Points
Point X-Surf Y-Surf
            No.
                (ft)
                                (ft)
                            80.000 180.000
                            108.934 172.075
                            138.384 166.356
                            168.181 162.875
                            198.157 161.652
                            228.138 162.694
                            257.956 165.995
                            287.440 171.536
                            316.422 179.286
                            344.736 189.200
                            372.222 201.223
                            398.722 215.285
                            424.086 231.306
                        448.169 249.195
                        470.833 268.850
                        491.950 290.159
                        511.399 313.001
                        529.069 337.244
                        544.860 362.752
                        558.681 389.379
                        570.454 416.972
                        580.112 445.375
                        587.599 474.426
                        592.873 503.959
                        595.904 533.805
                        596.117 542.088
Circle Center At X = 199.404 ; Y = 558.681 ; and Radius = 397.060
    Factor of Safety
*** 6.452 ***
```

Individual data on the 28 slices

| | | | Water Force | Water Force | Tie Force | Tie
 Force | Earthqu For | ake Sur | harge |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slice No. | $\begin{gathered} \text { Width } \\ (\mathrm{ft}) \end{gathered}$ | Weight
 (lbs) | $\begin{aligned} & \text { Top } \\ & \text { (lbs) } \end{aligned}$ | Bot
 (lbs) | Norm
 (l.bs) | $\begin{aligned} & \text { Tan } \\ & \text { (lbs) } \end{aligned}$ | $\begin{gathered} \text { Hor } \\ \text { (l.bs) } \end{gathered}$ | $\begin{aligned} & \text { Ver } \\ & \text { (lbs) } \end{aligned}$ | Load
 (l.bs) |
| 1 | 28.9 | 66034.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 2 | 29.4 | 197645.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 3 | 29.8 | 323520.8 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 4 | 30.0 | 440540.4 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 5 | 30.0 | 545909.6 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 6 | 29.8 | 637224.1 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 7 | 2.0 | 46909.3 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 8 | 27.4 | 621692.9 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 9 | 22.6 | 492193.5 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 10 | 6.4 | 138792.2 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 11 | 28.3 | 644981.8 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 12 | 27.5 | 670904.7 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 13 | 26.5 | 678981.6 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 14 | 25.4 | 669849.1 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 15 | 24.1 | 644663.8 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 16 | 22.7 | 605066.9 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 17 | 21.1 | 553141.2 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 18 | 19.4 | 491359.5 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 19 | 17.7 | 422519.4 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 20 | 10.9 | 245366.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 21 | 4.9 | 104247.6 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 22 | 13.8 | 275242.6 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 23 | 11.8 | 203526.8 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 24 | 9.7 | 138039.9 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 25 | 7.5 | 81974.8 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 26 | 5.3 | 38356.8 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 27 | 3.0 | 9960.9 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 28 | 0.2 | 129.6 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |

Failure Surface Specified By 25 Coordinate Points

| Point
 No. | X-Surf
 $(f t)$ | Y-Surf
 $(f t)$ |
| ---: | :---: | :---: |
| | | |
| 1 | 84.596 | 183.575 |
| 2 | 113.417 | 175.247 |
| 3 | 142.799 | 169.189 |
| 4 | 172.563 | 165.436 |
| 5 | 202.529 | 164.010 |
| 6 | 232.516 | 164.922 |
| 7 | 262.340 | 168.165 |
| 8 | 291.821 | 173.719 |
| 9 | 320.781 | 181.551 |
| 10 | 349.043 | 191.613 |
| 11 | 376.436 | 203.845 |

| 12 | 402.794 | 218.171 | | |
| :---: | :---: | :---: | :---: | :---: |
| 13 | 427.957 | 234.506 | | |
| 14 | 451.773 | 252.749 | | |
| 15 | 474.096 | 272.791 | | |
| 16 | 494.791 | 294.510 | | |
| 17 | 513.733 | 317.774 | | |
| 18 | 530.807 | 342.441 | | |
| 19 | 545.909 | 368.363 | | |
| 20 | 558.948 | 395.381 | | |
| 21 | 569.845 | 423.332 | | |
| 22 | 578.532 | 452.047 | | |
| 23 | 584.959 | 481.350 | | |
| 24 | 589.085 | 511.065 | | |
| 25 | 590.706 | 538.029 | | |
| Circle | At $\mathrm{X}=$ | 5.830 ; $\mathrm{Y}=$ | 549.138 ; and Radius = | 385.141 |
| Factor of Safety | | | | |
| 6.548 *** | | | | |

```
*** 6.548 ***
```

Failure Surface Specified By 25 Coordinate Points

| Point
 No. | X-Surf
 $($ ft $)$ | Y-Surf
 $(f t)$ |
| :---: | :---: | :---: |
| | | |
| 1 | 80.000 | 180.000 |
| 2 | 108.757 | 171.453 |
| 3 | 138.106 | 165.239 |
| 4 | 167.859 | 161.397 |
| 5 | 197.824 | 159.951 |
| 6 | 227.809 | 160.912 |
| 7 | 257.620 | 164.273 |
| 8 | 287.066 | 170.013 |
| 9 | 315.957 | 178.094 |
| 10 | 344.107 | 188.464 |
| 11 | 371.336 | 201.057 |
| 12 | 397.468 | 215.792 |
| 13 | 422.335 | 232.574 |
| 14 | 445.777 | 251.296 |
| 15 | 467.643 | 271.835 |
| 16 | 487.793 | 294.061 |
| 17 | 506.096 | 317.830 |
| 18 | 522.436 | 342.990 |
| 19 | 536.706 | 369.379 |
| 20 | 548.816 | 396.826 |
| 21 | 558.687 | 425.156 |
| 22 | 566.256 | 454.185 |
| 23 | 571.473 | 483.728 |

```
    24 574.307 513.594
    25 574.483 525.862
Circle Center At X = 200.846 ; Y = 533.955 ; and Radius = 374.016
    Factor of Safety
*** 6.649 ***
```

Failure Surface Specified By 25 Coordinate Points

| Point
 No. | X-Surf
 $($ ft $)$ | Y-Surf
 $($ ft $)$ |
| ---: | :---: | :---: |
| 1 | 102.980 | 197.873 |
| 2 | 131.596 | 188.867 |
| 3 | 160.850 | 182.219 |
| 4 | 190.549 | 177.975 |
| 5 | 220.494 | 176.162 |
| 6 | 250.487 | 176.792 |
| 7 | 280.330 | 179.861 |
| 8 | 309.823 | 185.349 |
| 9 | 338.773 | 193.219 |
| 10 | 366.986 | 203.419 |
| 11 | 394.274 | 215.881 |
| 12 | 420.459 | 230.524 |
| 13 | 445.364 | 247.248 |
| 14 | 468.826 | 265.944 |
| 15 | 490.688 | 286.488 |
| 16 | 510.806 | 308.743 |
| 17 | 529.045 | 332.562 |
| 18 | 545.286 | 357.785 |
| 19 | 559.419 | 384.247 |
| 20 | 571.352 | 411.772 |
| 21 | 581.006 | 440.177 |
| 22 | 588.315 | 469.272 |
| 23 | 593.232 | 498.867 |
| 24 | 595.724 | 528.763 |
| 25 | 595.746 | 541.810 |

Circle Center At $X=227.762$; $Y=544.384$; and Radius $=368.294$

```
    Factor of Safety
*** 6.659 ***
```

Failure Surface Specified By 25 Coordinate Points

```
        Point X-Surf Y-Surf
    No.
        (ft)
    89.192
    118.588 181.159
    148.343 177.338
    178.299 175.708
    208.294 176.277
    238.166 179.042
    267.755 183.989
    296.903 191.090
    325.452 200.307
    353.248 211.592
    380.144 224.883
    405.993 240.108
    430.657 257.187
    454.003 276.027
    475.907 296.527
    496.249 318.576
    514.921 342.057
    531.823 366.843
    546.863 392.800
    559.961 419.790
    571.047 447.667
    580.059 476.281
    586.952 505.479
    591.686 535.103
    592.020 539.015
Circle Center At X = 185.541 ; Y = 584.821 ; and Radius = 409.177
    Factor of Safety
```

Failure Surface Specified By 24 Coordinate Points

| Point
 No. | X-Surf
 $(f t)$ | Y-Surf
 $(f t)$ |
| :---: | :---: | :---: |
| | | |
| 1 | 98.384 | 194.299 |
| 2 | 127.311 | 186.346 |
| 3 | 156.781 | 180.733 |
| 4 | 186.606 | 177.495 |
| 5 | 216.594 | 176.653 |
| 6 | 246.553 | 178.213 |
| 7 | 276.292 | 182.165 |
| 8 | 305.619 | 188.483 |
| 9 | 334.347 | 197.126 |

```
    10 362.291 208.040
    11 389.273 221.155
    12 415.119 236.386
    13 439.664 253.635
    14 462.750 272.793
    15 484.230 293.736
    16 503.966 316.331
    17 521.831 340.431
    18 537.710 365.884
    19 551.503 392.525
    20 563.121 420.184
    21 572.488 448.684
    22 579.546 477.842
    23 584.249 507.471
    24 586.364 534.773
Circle Center At X = 212.120 ; Y = 551.220 ; and Radius = 374.605
    Factor of Safety
*** 6.772 ***
```

Failure Surface Specified By 24 Coordinate Points

| Point
 No. | X-Surf
 $($ ft $)$ | Y-Surf
 $(f t)$ |
| ---: | :---: | :---: |
| | | |
| 1 | 98.384 | 194.299 |
| 2 | 126.898 | 184.974 |
| 3 | 156.095 | 178.080 |
| 4 | 185.769 | 173.666 |
| 5 | 215.708 | 171.762 |
| 6 | 245.702 | 172.383 |
| 7 | 275.537 | 175.524 |
| 8 | 305.002 | 181.162 |
| 9 | 333.889 | 189.258 |
| 10 | 361.993 | 199.754 |
| 11 | 389.115 | 212.576 |
| 12 | 415.062 | 227.634 |
| 13 | 439.652 | 244.820 |
| 14 | 462.709 | 264.013 |
| 15 | 484.071 | 285.076 |
| 16 | 503.586 | 307.861 |
| 17 | 521.116 | 332.207 |
| 18 | 536.536 | 357.940 |
| 19 | 549.739 | 384.879 |
| 20 | 560.629 | 412.833 |
| 21 | 569.130 | 441.603 |
| 22 | 575.182 | 470.986 |
| 23 | 578.741 | 500.774 |

Circle Center At $X=223.341$; $Y=528.090$; and Radius $=356.414$
Factor of Safety

```
*** 6.789 ***
```

Failure Surface Specified By 25 Coordinate Points

| Point
 No. | X-Surf
 $(f t)$ | Y-Surf
 $(f t)$ |
| ---: | ---: | :--- |
| | | |
| 1 | 80.000 | 180.000 |
| 2 | 109.780 | 176.374 |
| 3 | 139.735 | 174.735 |
| 4 | 169.733 | 175.090 |
| 5 | 199.641 | 177.436 |
| 6 | 229.327 | 181.765 |
| 7 | 258.660 | 188.055 |
| 8 | 287.511 | 196.281 |
| 9 | 315.751 | 206.405 |
| 10 | 343.256 | 218.383 |
| 11 | 369.905 | 232.161 |
| 12 | 395.579 | 247.680 |
| 13 | 420.166 | 264.869 |
| 14 | 443.557 | 283.655 |
| 15 | 465.647 | 303.952 |
| 16 | 486.341 | 325.672 |
| 17 | 505.546 | 348.719 |
| 18 | 523.178 | 372.991 |
| 19 | 539.158 | 398.381 |
| 20 | 553.416 | 424.776 |
| 21 | 565.889 | 452.060 |
| 22 | 576.522 | 480.113 |
| 23 | 585.268 | 508.810 |
| 24 | 592.089 | 538.024 |
| 25 | 592.284 | 539.213 |

Circle Center At $X=149.404$; $Y=625.967$; and Radius $=451.336$

Factor of Safety *** 6.789 ***

```
        Point 
    121.364 212.172
        149.971 203.136
        179.235 196.535
        208.951 192.414
        238.908 190.804
        268.894 191.716
        298.698 195.142
        328.108 201.060
        356.918 209.426
        384.923 220.182
        411.926 233.253
        437.736 248.545
        462.171 265.950
        485.058 285.346
        506.234 306.596
        525.552 329.549
        542.873 354.043
        558.076 379.905
        571.054 406.953
        581.714 434.995
        589.982 463.833
        595.798 493.264
        599.122 523.079
        599.707 544.780
Circle Center At X = 243.105 ; Y = 547.359 ; and Radius = 356.611
    Factor of Safety
```

Failure Surface Specified By 24 Coordinate Points

| Point
 No. | X-Surf
 $(f t)$ | Y-Surf
 $(f t)$ |
| :---: | :---: | :---: |
| | | |
| 1 | 121.364 | 212.172 |
| 2 | 149.884 | 202.866 |
| 3 | 179.092 | 196.020 |
| 4 | 208.777 | 191.685 |
| 5 | 238.724 | 189.892 |
| 6 | 268.714 | 190.654 |
| 7 | 298.531 | 193.965 |
| 8 | 327.958 | 199.802 |
| 9 | 356.781 | 208.121 |

```
    10 384.792 218.863
    11 411.787 231.950
    12 437.571 247.287
    13 461.955 264.762
    14 484.765 284.248
    15 505.833 305.605
    16 525.008 328.678
    17 542.149 353.298
    18 557.133 379.288
    19 569.851 406.459
    20 580.211 434.614
    21 588.138 463.547
    22 593.573 493.051
    23 596.478 522.910
    24 596.709 542.532
Circle Center At X = 244.824 ; Y = 541.689 ; and Radius = 351.886
    Factor of Safety
*** 6.849 ***
**** END OF GSTABL7 OUTPUT ****
```

15558 Maricopa Hwy, Ojai: Section A-1 Circular, Static


```
*** GSTABL7 ***
    ** GSTABL7 by Dr. Garry H. Gregory, Ph.D.,P.E.,D.GE **
    ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 **
    (All Rights Reserved-Unauthorized Use Prohibited)
```

 SLOPE STABILITY ANALYSIS SYSTEM
 Modified Bishop, Simplified Janbu, or GLE Method of Slices.
(Includes Spencer \& Morgenstern-Price Type Analysis)
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
Surfaces, Pseudo-Static \& Newmark Earthquake, and Applied Forces.
Analysis Run Date: 6/2/2020
Time of Run: 09:25AM
Run By: IM
Input Data Filename: C:\Users \backslash Project Files \backslash Slope Stability $\backslash 18-092902$
(OJAI QUARRY) \Section A-2, circular failure, static.in
Output Filename: C:\Users\Project Files\Slope Stability\18-092902
(OJAI QUARRY) \Section A-2, circular failure, static.OUT
Unit System: English
Plotted Output Filename: C:\Users\Project Files \Slope Stability\18-092902
(OJAI QUARRY) \Section A-2, circular failure, static.PLT
PROBLEM DESCRIPTION: 15558 Maricopa Hwy, Ojai: Section A-2
Circular, Static

BOUNDARY COORDINATES

6 Top Boundaries
6 Total Boundaries

| Boundary
 No. | X-Left
 (ft) | Y-Left
 (ft) | X-Right
 (ft) | Y-Right
 (ft) | Soil Type
 Below Bnd |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.00 | 12.00 | 20.00 | 12.00 | 1 |
| 2 | 20.00 | 12.00 | 220.00 | 170.00 | 1 |

```
\begin{tabular}{lllll}
220.00 & 170.00 & 230.00 & 170.00 & 1 \\
230.00 & 170.00 & 280.00 & 180.00 & 1 \\
280.00 & 180.00 & 310.00 & 210.00 & 1 \\
310.00 & 210.00 & 500.00 & 280.00 & 1
\end{tabular}
    Default Y-Origin = 0.00(ft)
    Default X-Plus Value = 0.00(ft)
    Default Y-Plus Value = 0.00(ft)
ISOTROPIC SOIL PARAMETERS
    1 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.
Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
    No. (pcf) (pcf) (psf) (deg) Param. (psf) No.
    1150.0 150.0 26000.0 45.0 0.00 0.0
A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
1000 Trial Surfaces Have Been Generated.
    1 0 \text { Surface(s) Initiate(s) From Each Of 100 Points Equally Spaced}
Along The Ground Surface Between X = 20.00(ft)
                        and }X=220.00(ft
Each Surface Terminates Between X = 225.00(ft)
                        and X = 500.00(ft)
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is Y = 0.00(ft)
20.00(ft) Line Segments Define Each Trial Failure Surface.
Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First.
```

```
* * Safety Factors Are Calculated By The Modified Bishop Method * *
```

```
Total Number of Trial Surfaces Attempted = 1000
Number of Failed Attempts to Generate Trial Surface = 57
Number of Trial Surfaces With Valid FS = 943
Percentage of Trial Surfaces With Non-Valid FS Solutions
of the Total Attempted = 5.7 %
Statistical Data On All Valid FS Values:
    FS Max = 210.011 FS Min = 7.708 FS Ave = 22.331
    Standard Deviation = 22.185 Coefficient of Variation = 99.34%
```

Failure Surface Specified By 30 Coordinate Points

| Point
 No. | X-Surf
 $(f t)$ | Y-Surf
 $(f t)$ |
| :---: | :---: | ---: |
| | | |
| 1 | 20.000 | 12.000 |
| 2 | 39.662 | 8.338 |
| 3 | 59.488 | 5.703 |
| 4 | 79.423 | 4.103 |
| 5 | 99.416 | 3.540 |
| 6 | 119.410 | 4.018 |
| 7 | 139.352 | 5.535 |
| 8 | 159.189 | 8.086 |
| 9 | 178.866 | 11.665 |
| 10 | 198.330 | 16.263 |
| 11 | 217.530 | 21.865 |
| 12 | 236.412 | 28.459 |
| 13 | 254.925 | 36.024 |
| 14 | 273.021 | 44.543 |
| 15 | 290.649 | 53.990 |
| 16 | 307.762 | 64.341 |
| 17 | 324.314 | 75.567 |
| 18 | 340.260 | 87.639 |
| 19 | 355.556 | 100.524 |
| 20 | 370.163 | 114.186 |
| 21 | 384.039 | 128.589 |
| 22 | 397.148 | 143.694 |
| 23 | 409.454 | 159.460 |
| 24 | 420.923 | 175.844 |
| 25 | 431.526 | 192.802 |
| 26 | 441.232 | 210.289 |
| 27 | 450.017 | 228.257 |
| 28 | 457.855 | 246.657 |
| 29 | 464.726 | 265.439 |

| 30 | 267.2705 |
| :---: | :---: |
| Circle Center At $\mathrm{X}=$ | $260.240 ; \mathrm{Y}=388.048$; and Radius $=384.513$ |

Factor of Safety
$* * * \quad 7.708 \quad * * *$

Individual data on the 33 slices

| | | | Water Force | Water Force | Tie Force | Tie Force | Earthqu For | Suke ${ }^{\text {Surch }}$ | harge |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slice No. | Width (ft) | Weight
 (l.bs) | $\begin{aligned} & \text { Top } \\ & (\mathrm{lbs}) \end{aligned}$ | Bot
 (lbs) | Norm
 (l.bs) | $\begin{aligned} & \text { Tan } \\ & \text { (lbs) } \end{aligned}$ | $\begin{gathered} \text { Hor } \\ \text { (l.bs) } \end{gathered}$ | Ver
 (lbs) | Load
 (l.bs) |
| 1 | 19.7 | 28305.5 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 2 | 19.8 | 84289.1 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 3 | 19.9 | 138056.6 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 4 | 20.0 | 188985.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 5 | 20.0 | 236502.3 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 6 | 19.9 | 280094.2 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 7 | 19.8 | 319309.1 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 8 | 19.7 | 353763.2 | 0.0 | 0.0 | | 0 | 0.0 | 0.0 | 0.0 |
| 9 | 19.5 | 383144.9 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 10 | 19.2 | 407217.2 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 11 | 2.5 | 54370.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 12 | 10.0 | 218289.3 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 13 | 6.4 | 137820.1 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 14 | 18.5 | 391265.1 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 15 | 18.1 | 370532.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 16 | 7.0 | 139121.9 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 17 | 10.6 | 214339.2 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 18 | 17.1 | 359478.2 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 19 | 2.2 | 48270.7 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 20 | 14.3 | 304718.2 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 21 | 15.9 | 326749.6 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 22 | 15.3 | 298022.8 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 23 | 14.6 | 267558.4 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 24 | 13.9 | 235899.4 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 25 | 13.1 | 203614.9 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 26 | 12.3 | 171292.8 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 27 | 11.5 | 139531.6 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 28 | 10.6 | 108934.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 29 | 9.7 | 80100.2 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 30 | 8.8 | 53620.3 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 31 | 7.8 | 30066.9 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 32 | 6.9 | 9988.1 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |
| 33 | 0.5 | 63.8 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0.0 |

Failure Surface Specified By 32 Coordinate Points

Failure Surface Specified By 31 Coordinate Points
Point X-Surf Y-Surf

No.
(ft)
(ft)
$32.121 \quad 21.576$
$51.565 \quad 16.890$
$71.225 \quad 13.220$
$91.049 \quad 10.575$
$110.984 \quad 8.964$
130.9768 .390
$150.971 \quad 8.854$
$170.914 \quad 10.356$
$190.753 \quad 12.892$
$210.433 \quad 16.454$
$229.902 \quad 21.034$
$249.106 \quad 26.618$
$267.995 \quad 33.192$
$286.517 \quad 40.737$
$304.622 \quad 49.234$
$322.262 \quad 58.660$
$339.388 \quad 68.989$
$355.955 \quad 80.193$
$371.918 \quad 92.242$
$387.234 \quad 105.104$
$401.861 \quad 118.744$
$415.760 \quad 133.125$
$428.894 \quad 148.208$
$441.227 \quad 163.953$
$452.726 \quad 180.317$
$463.360 \quad 197.256$
$473.099 \quad 214.724$
$481.919 \quad 232.674$
$489.795 \quad 251.058$
$496.705 \quad 269.826$
$499.844 \quad 279.943$
Circle Center At $X=132.031$; $Y=393.445$; and Radius $=385.057$
Factor of Safety
*** 7.757 ***
Failure Surface Specified By 30 Coordinate Points

| Point
 No. | X-Surf
 $(f t)$ | Y-Surf
 $(f t)$ |
| :---: | ---: | ---: |
| | | |
| 1 | 38.182 | 26.364 |
| 2 | 57.666 | 21.851 |
| 3 | 77.361 | 18.371 |
| 4 | 97.212 | 15.933 |
| 5 | 117.164 | 14.543 |
| 6 | 137.161 | 14.206 |

```
        7
        8
        9
        1 0
        1 1
        12
        13
        14
        1 5
        1 6
        1 7
        1 8
        1 9
        20
        21
        22
        23
        24
        25
        26
        27
    28
    29
    30
```

$$
157.148
$$

$$
177.070
$$

$$
196.871
$$

$$
216.496
$$

$$
235.892
$$

$$
255.003
$$

$$
273.778
$$

$$
292.163
$$

$$
310.109
$$

$$
327.565
$$

$$
344.483
$$

$$
360.816
$$

$$
376.518
$$

$$
391.546
$$

$$
405.859
$$

$$
419.416
$$

$$
432.180
$$

$$
444.116
$$

$$
455.190
$$

$$
465.372
$$

$$
474.634
$$

$$
482.949
$$

$$
490.296
$$

$$
495.130
$$

14.922 16.689 19.503 23.355 28.236 34.131 41.023 48.895 57.724 67.486 78.153 89.696 102.083 115.280 129.250 143.953 159.351 175.399 192.053 209.267 226.993 245.183 263.785 278.206

```
Circle Center At \(X=133.587\); \(Y=393.729\); and Radius \(=379.551\)
Factor of Safety
*** 7.916 ***
```

Failure Surface Specified By 30 Coordinate Points

| Point
 No. | X-Surf
 $(f t)$ | Y-Surf
 $(f t)$ |
| :---: | :---: | :---: |
| 1 | 34.141 | 23.172 |
| 2 | 53.871 | 19.897 |
| 3 | 73.739 | 17.598 |
| 4 | 93.696 | 16.281 |
| 5 | 113.693 | 15.950 |
| 6 | 133.682 | 16.605 |
| 7 | 153.615 | 18.244 |
| 8 | 173.442 | 20.864 |
| 9 | 193.117 | 24.458 |
| 10 | 212.590 | 29.017 |
| 11 | 231.815 | 34.531 |
| 12 | 250.745 | 40.986 |
| 13 | 269.334 | 48.366 |

```
                                287.536 56.653
                                305.308 65.827
                                322.605 75.866
        339.388 86.746
        355.613 98.439
        371.242 110.918
        386.237 124.153
        400.562 138.110
        414.181 152.756
        427.062 168.056
        439.172 183.972
        450.484 200.466
        460.969 217.498
        470.602 235.025
        479.359 253.006
        487.219 271.397
        488.888 275.906
Circle Center At X = 110.443 ; Y = 421.364 ; and Radius = 405.437
        Factor of Safety
```

 Failure Surface Specified By 30 Coordinate Points
 | Point
 No. | X-Surf
 $(f t)$ | Y-Surf
 $(f t)$ |
| ---: | ---: | ---: |
| | | |
| 1 | 36.162 | 24.768 |
| 2 | 55.498 | 19.660 |
| 3 | 75.092 | 15.649 |
| 4 | 94.881 | 12.750 |
| 5 | 114.802 | 10.971 |
| 6 | 134.791 | 10.318 |
| 7 | 154.785 | 10.792 |
| 8 | 174.721 | 12.393 |
| 9 | 194.535 | 15.115 |
| 10 | 214.164 | 18.950 |
| 11 | 233.546 | 23.885 |
| 12 | 252.618 | 29.904 |
| 13 | 271.321 | 36.989 |
| 14 | 289.595 | 45.118 |
| 15 | 307.382 | 54.263 |
| 16 | 324.624 | 64.396 |
| 17 | 341.269 | 75.486 |
| 18 | 357.261 | 87.495 |
| 19 | 372.551 | 100.388 |
| 20 | 387.091 | 114.121 |
| 21 | 400.832 | 128.653 |

| 22 | 413.733 | 143.936 |
| :--- | :--- | :--- |
| 23 | 425.752 | 159.921 |
| 24 | 436.851 | 176.559 |
| 25 | 446.994 | 193.796 |
| 26 | 456.150 | 211.578 |
| 27 | 464.288 | 229.847 |
| 28 | 471.384 | 248.546 |
| 29 | 477.414 | 267.615 |
| 30 | 478.559 | 272.101 |
| Circle Center At $X=$ | $136.397 ; Y=364.798 ;$ and Radius $=354.497$ | |

```
    Factor of Safety
*** 7.942 ***
```

Failure Surface Specified By 31 Coordinate Points

| Point | X-Surf
 (ft) | Y-Surf
 $(f t)$ |
| ---: | ---: | ---: |
| No. | | |
| 1 | 40.202 | 27.960 |
| 2 | 59.292 | 21.994 |
| 3 | 78.692 | 17.132 |
| 4 | 98.338 | 13.388 |
| 5 | 118.167 | 10.776 |
| 6 | 138.112 | 9.303 |
| 7 | 158.110 | 8.975 |
| 8 | 178.093 | 9.792 |
| 9 | 197.997 | 11.753 |
| 10 | 217.756 | 14.850 |
| 11 | 237.305 | 19.073 |
| 12 | 256.580 | 24.408 |
| 13 | 275.518 | 30.839 |
| 14 | 294.056 | 38.344 |
| 15 | 312.135 | 46.897 |
| 16 | 329.694 | 56.472 |
| 17 | 346.676 | 67.037 |
| 18 | 363.025 | 78.556 |
| 19 | 378.688 | 90.993 |
| 20 | 393.613 | 104.307 |
| 21 | 407.751 | 118.453 |
| 22 | 421.056 | 133.386 |
| 23 | 433.484 | 149.056 |
| 24 | 444.994 | 165.411 |
| 25 | 455.549 | 182.399 |
| 26 | 465.114 | 199.964 |
| 27 | 473.657 | 218.048 |
| 28 | 481.151 | 236.591 |
| 29 | 487.570 | 255.532 |
| 30 | 492.895 | 274.810 |

```
    3 1
        493.497
        277.604
Circle Center At X = 153.838 ; Y = 358.082 ; and Radius = 349.133
    Factor of Safety
*** 7.962 ***
```

Failure Surface Specified By 31 Coordinate Points

| Point | X-Surf | Y-Surf |
| :---: | :---: | :---: |
| No. | $(f t)$ | $(f t)$ |

$1 \quad 40.202 \quad 27.960$
$2 \quad 58.950 \quad 20.995$
$3 \quad 78.078 \quad 15.153$
$4 \quad 97.518 \quad 10.452$
$5 \quad 117.201 \quad 6.910$
$6 \quad 137.060 \quad 4.539$

| 7 | 157.025 | 3.347 |
| :--- | :--- | :--- |

| 8 | 177.025 | 3.339 |
| :--- | :--- | :--- |

$9 \quad 196.990 \quad 4.514$
$10 \quad 216.851 \quad 6.869$
$11 \quad 236.538 \quad 10.394$
$12 \quad 255.982 \quad 15.079$
$13 \quad 275.114 \quad 20.906$

| 14 | 293.868 | 27.855 |
| :--- | :--- | :--- |
| 15 | 312.178 | 35.901 |

$15 \quad 312.178 \quad 35.901$
$16 \quad 329.980 \quad 45.017$
$17 \quad 347.211 \quad 55.170$
$18 \quad 363.811 \quad 66.325$
$19 \quad 379.722 \quad 78.443$
$20 \quad 394.888 \quad 91.481$
$21 \quad 409.256 \quad 105.394$
$22 \quad 422.775 \quad 120.133$
$23 \quad 435.399 \quad 135.646$
$\begin{array}{lll}24 & 447.082 & 151.878 \\ 25 & 457.785 & 168.774\end{array}$
$\begin{array}{lll}25 & 457.785 & 168.774 \\ 26 & 467.468 & 186.273\end{array}$
$26 \quad 467.468 \quad 186.273$
$27 \quad 476.100 \quad 204.314$
$28 \quad 483.649 \quad 222.835$
$29 \quad 490.088 \quad 241.770$
$30 \quad 495.396 \quad 261.053$
$31 \quad 499.373 \quad 279.769$
Circle Center At $X=167.164$; $Y=341.029$; and Radius $=337.834$
Factor of Safety
*** 7.975 ***

Failure Surface Specified By 29 Coordinate Points

| Point
 No. | X-Surf
 $($ ft $)$ | Y-Surf
 $($ ft $)$ |
| :---: | ---: | ---: |
| | | |
| 1 | 30.101 | 19.980 |
| 2 | 49.985 | 17.825 |
| 3 | 69.947 | 16.593 |
| 4 | 89.944 | 16.286 |
| 5 | 109.935 | 16.904 |
| 6 | 129.875 | 18.447 |
| 7 | 149.723 | 20.911 |
| 8 | 169.435 | 24.290 |
| 9 | 188.970 | 28.578 |
| 10 | 208.286 | 33.766 |
| 11 | 227.340 | 39.841 |
| 12 | 246.094 | 46.792 |
| 13 | 264.505 | 54.603 |
| 14 | 282.536 | 63.258 |
| 15 | 300.146 | 72.738 |
| 16 | 317.300 | 83.022 |
| 17 | 333.959 | 94.089 |
| 18 | 350.087 | 105.915 |
| 19 | 365.652 | 118.475 |
| 20 | 380.619 | 131.742 |
| 21 | 394.955 | 145.686 |
| 22 | 408.631 | 160.280 |
| 23 | 421.618 | 175.490 |
| 24 | 433.886 | 191.285 |
| 25 | 445.411 | 207.631 |
| 26 | 456.166 | 224.493 |
| 27 | 466.130 | 241.834 |
| 28 | 475.281 | 259.618 |
| 29 | 481.483 | 273.178 |

Circle Center At $X=86.582$; $Y=448.384$; and Radius $=432.111$

Factor of Safety
*** 7.981 ***

Failure Surface Specified By 30 Coordinate Points

| Point
 No. | X-Surf
 $(f t)$ | Y-Surf
 $(f t)$ |
| :---: | :---: | :---: |
| | | |
| 1 | 34.141 | 23.172 |
| 2 | 54.037 | 21.129 |
| 3 | 74.003 | 19.972 |

```
        4 94.002 19.701
        5 113.992 20.318
        6 133.935 21.820
        7
        8
        9
    1 0
    1 1
        12
        1 3
    1 4
    1 5
    1 6
    1 7
    18
    19
    20
    2 1
    22
    23
    24
    25
    26
    2 7
    28
    29
    30
        153.793 24.206
        173.524 27.470
        193.092 31.607
        212.457 36.607
        231.581 42.462
        250.426 49.159
        268.956 56.685
        287.134 65.026
        304.923 74.165
        322.290 84.084
        339.200 94.764
        355.620 106.184
        371.516 118.320
        386.859 131.150
        401.617 144.648
        415.763 158.787
        429.267 173.539
        442.103 188.877
        454.246 204.768
        465.673 221.183
        476.360 238.088
        486.287 255.450
        495.433 273.236
        498.243 279.353
Circle Center At X = 90.155 ; Y = 470.175 ; and Radius = 450.499
    Factor of Safety
**** END OF GSTABL7 OUTPUT ****
```


15558 Maricopa Hwy, Ojai: Section A-2 Circular, Static

APPENDIX II

NORFLEET CONSULTANTS REPORT DATED DECEMBER 5, 2011

Norfleet Consultants

| Engineering | 6430 Preston Ave. |
| :--- | :---: |
| Geology | Suite A |
| Hydrogeology | Livermore, CA 94551 |
| Geophysics | $(925) 606-8595$ |

December 5, 2011
Mr. L. Mosler
Proj. No. 111882
Mosler Rock Ojai Quarry
Box 502
Newbury Park, CA 91319
RE: Slope Stability Study
For the Ojai Quarry
Reclamation Plan
Ojai, CA
Dear Mr. Mosler,
At your request, we have completed our slope stability evaluation for the Reclamation Plan for the Mosler Rock Ojai Quarry Project in Ojai, California. This study evaluates the stability of the final reclaimed slope geometry.

Our scope of work included:

- Site meetings with quarry personnel and site visits to the quarry.
- Compilation, review and summary of available pertinent geologic and geotechnical documents, to support slope design analysis and recommendations for a quarry Reclamation Plan.
- Numerical evaluation of cross-sections for slope stability in static and pseudo-static loading conditions of the proposed reclamation slope geometry.
- Discussions with quarry personnel about the implications of the findings of this study.
- Preparation of this report.

The intent and purpose of this report is to provide a summary of the geologic and geotechnical issues as they pertain to long-term, global slope stability of the final slope geometries at reclamation (after quarrying has ceased) consistent with SMARA requirements. Working and interim slope stability were not evaluated. We understand that an engineering firm currently provides those services. Our fieldwork was performed in November, 2011.

GEOLOGIC SETTING

The quarry is located on undeveloped land of the Los Padres National Forest within the Topatopa range, and is adjacent to State Highway 33 (Rt 33) and the north fork of Matilija Creek (Figures 1 and 2). It is about 4 miles north of the city of Ojai in Ventura County. Eocene sandstones of the Matilija formation are mined in the quarry.

The area was mapped in 1928 by Kerr and Schenck and again by Dibblee (1982). Dibblee’s structural mapping is general only. It does not show the detailed structural complexities within the ramp zone. The depostional environment of the sandstone was discussed by Link (1975). Squires (1999) did a detailed stratigraphic analysis of the Matilija sandstone at the Matalija Hot Springs with an auxiliary section opposite the quarry.

The quarry is located in the core of large thrust ramp (called the Matilija Overturn by Kerr and Schenck). The thrust ramp extends diagonally (southeast-to-northwest) across the range, forming a large fold. The ramp fold axis is quasi-vertical, exposing a cross-section of the ramp (in plan view). Ramp development caused rotation, faulting, fracturing, shearing, and bedding plane slip along the sandstone/siltstone beds.

SITE GEOLOGY

Field descriptions are based on the exposures in the quarry at the time of our site visits in late 2011. This is an active quarry. As mining progress, features described in this report may be destroyed while new geologic features will become visible. With a few exceptions, the quarry beds dip steeply (80 to 85 degrees SE) and strike ~N30E. The beds young to the southeast. The quarry face has an approximate bearing of N40W.

The quarry is located on the lower part of a southwest sloping steep ridge (Photos 1 and 2). The current quarry (active and reclaimed) is about 650 feet wide and long with an elevation change of about 500 feet. The undisturbed ground above the quarry slopes 33 to 36 degrees (1.54-1.4 to 1) while the ground surface adjacent to the north side of the lower part of the quarry slopes about 45 degrees (1 to 1). There were no obvious indications of large-scale slope failures in the surrounding natural slopes.

In the quarry, the Matilija formation consists of interbedded sandstones and siltstones (Photo 3). Sandstone beds vary from a foot or so thick to massive beds more than 30 feet thick. The sandstones are fine- to coarse-grained and contain few obvious depositional features. The siltstones are thin bedded (an inch or less) and form zones a few inches thick to more than 20 feet thick. The sandstones are light brown in color while the siltstones are dark brown (blackish looking). The sandstones are hard enough that they have to be blasted.

The stratigraphy of the Matilija formation was evaluated by Link (1975). The lower Matilija formation crops out in the quarry and consists of two lithofacies: distal and proximal turbidites. The distal turbidite lithofacies is a deep water flysch sequence. It consists of thin-bedded, graded sandstones with thin siltstone/silty clay interbeds. They exhibit a classic fining-upwards Bouma sequence. The sandstone beds typically have sharp lower boundaries and can contain
mudstone clasts. They are blanket-like turbidites. The proximal turbidite lithofacies overlies the distal zone. The proximal turbidites contain thick lower sandstone beds (3 to 45 feet thick) with a slight internal coarsening upward in grain size. This zone resembles channel-like turbidites and are thought to have formed within a submarine-fan complex. See Link(1975) for further details.

For mapping purposes, the rocks within the pit were separated into three domains (A, B, and C , Figure 2). Domains are used as geomechanical units (GMU's). Domains A and B are part of the distal turbidite lithofacies and Domain C is part of the proximal turbidite lithofacies.

Domain A is located at the northern side of the quarry (Photo 1). It consists of thick (3 to 30 feet) sandstone beds and thin siltstone beds (most under 1 foot thick; Photo 3). It appears to contain two fining upward sequences (from north to south), each about 150 feet thick. The upper part of each sequence contains thicker and more numerous siltstone beds while the basal part contains thick sandstone beds with scattered, thin siltstone beds. Domain B is a narrow zone ($\sim 100 \mathrm{ft}$ wide) near the middle of the quarry (Photos 2 and 4). It consists mainly of siltstone beds less than 1 inch wide with occasional sandstone beds up to a few feet wide. It is more erodable than the other domains and forms a broad gully that extends up and down the slope. The siltstones are easily broken apart with a rock hammer (and sometimes by hand) and can be excavated with machinery. Domain C is located at the southern side of the quarry (Photos 2 and 5). It consists of massive sandstone units with few, thin siltstone beds. It is about 200 feet thick. In this area, bedding can be difficult to identify even in fresh exposures. At the ground surface, these sandstones erode into large boulders.

There is a sub-domain at the uphill end of Domain A. This area consists of extensively fractured sandstone that appears to be part of a fault/shear zone. It has a triangular shape and is informally called the triangle zone (TZ in Figure 2, Photo 6). No siltstones were visible within this zone. The sandstone has fractured into large blocks of all sizes, ranging from a foot on a side to blocks 10 feet or more on a side. It has the characteristics of a large gravel pile and has about a 70 foot high steep face (45 to 60 degree slope). This is the only sandstone area that can be excavated without blasting. This area was mapped by PML and is identified on their geologic map as a "scattered boulder" zone.

Rocks in the quarry are fractured/jointed/sheared/faulted to varying levels. All of these features will be referred to as joints unless specifically described otherwise. It appears that bedding plane slip was concentrated in the siltstone beds. It is not known how much stratigraphic shortening occurred. The thickness of the main siltstone bed on the west side of Rt 33 is more than double the thickness of the main siltstone zone (Domain B) in the quarry (Photo 13). Structural relationships on either side of Rt 33 suggests that a fault extends partially through the north end of the river valley, and it may be difficult to project stratigraphic correlations across Rt 33.

We observed a fault at the upper part of Domain A (above bench 3, Photo 7). The fault is exposed in a naturally occurring gully that existed prior to any quarrying. The strike and dip of the fault is N25W 55SW. About 200 feet of the fault plane exposed in a gully. The gully is 20 to 30 feet deep and the fault plane forms the south side of the gully. We do not know the uphill extension of the fault. The fault could be traced down into the upper road (part of bench 3) that
cuts across the quarry, but not further. The structural orientation of the fault suggests that it extends downhill into the siltstone zone (Domain B).

We observed bedding plane slip (a fault) in the middle of Domain A (Photos 3 and 8). The upper part of this fault appeared to widen out into a triangular shape at the base of the triangle zone. The structural relationship between this fault and the triangle zone is unknown.

We observed one and possibly two faults in Domain C, and there are likely others. These faults are quasi-parallel to bedding. These faults have weather into deep crevasses filled with sand (Photo 5). We did not observe faults that cut across bedding.

Residual soils a few feet thick overlie bedded sandstones and siltstones in Domains A and B. In the fractured rock (sub-domain A) and massive sandstones (Domain C), bedrock is overlain by sands and sandstone corestones forming a zone that is 10 to 50 feet thick (a saprolite ${ }^{1}$; Photos 9). The boundaries between soil, saprolite, and bedrock are gradational, but thin. We did not observe visibly weathered bedrock even though weathering on a microscopic level exists. We did not observe obvious alteration/mineralization of bedrock. One of the weathering effects on both the sandstones and siltstones is that as weathering increases, joint spacing and persistence is reduced and joint density increases. The above descriptions are based on our visual field observations.

We measured joints along the quarry roads at various locations throughout the quarry. Data collected included joint orientation, termination, spacing, persistence, type, width, shape, roughness, and filling. The poles to the joint orientation data were plotted on stereonets to evaluate the potential for wedge and planar failures daylighting in the quarry walls. This data was used to estimate strength envelopes for the sandstones and siltstones.

The majority of the joints are thin (most less than $1 / 8$ inch wide to tight; Photos $5,10,11$, and 12). Most joints were not filled, but some contained a thin fill. Occasional slickenslides were observed. Virtually all of the sandstone units have been blasted. Blasting widened many of the joints and locally increased joint density. The majority of the observed joints dipped out of the quarry faces. Most dip between 30 and 45 degrees. The dip direction of most joints is perpendicular (± 20 degrees) to the quarry face. No bedding parallel joints within the sandstones were observed. No free/flowing water was observed in the quarry. No indications of long-term, historic water flow were observed in the quarry.

Schmidt hammer (type N) readings were taken at several locations in the sandstone units. The readings were corrected as described in Basu and Ayding (2004). The compressive strength ranged from 7,000 to 8,000 psi (48 to 70 MPa). These values are consistent with hammer tests (Brown, 1981). Hammer strikes indicate that the intact rock has a grade of R4 to R5 (Hoek and Brown, 1997; Hack and Huisman, 2002). The Schmidt hammer readings have an inherent, sample bias towards testing larger, stronger rocks. We performed a few Schmidt hammer tests on the siltstones. The compressive strength is in the range of $1000 \mathrm{psi}(144,000 \mathrm{pcf})$. These

[^5]values should be considered an approximation only. The values were at the low end of the scale of the hammer and the siltstones were loose and finely fractured, making it difficult to find good surfaces to test.

RQD values vary with the Domain. The RQD of Domain B (the siltstone zone) horizontally and vertically is 0 to 10 . The RQD of Domain C (the massive sandstone) horizontally and vertically is 80 to 100. The RQD would be less in a fault/shear zone. The RQD of Domain A (interbedded sandstones and siltstones) is variable because of the anisotropic nature of the zone. The overall RQD is between 40 and 60 , with higher and lower values depending on the location. In a horizontal direction, RQD is controlled by sandstone/siltstone bed thicknesses, joint density and minor changes in the scan line orientation and location. In a vertical direction, RQD values are controlled by joint density within a single sandstone bed. RQD would be close to 0 in the siltstones.

The California Geological Survey (CGS) Seismic Hazard Zone Report for Matilija quadrangle contains material properties. The Matilija sandstone was not directly tested, but the phi angle was estimated at 38 degrees. No cohesion value was listed. These values represent near-surface, weathered sandstone (10 to 40 feet from the ground surface) instead of less weathered (stronger) sandstones. No landslides were shown within the Matilija sandstone units in the vicinity of the quarry.

No historic air photographs were evaluated.

Seismicity

The Matilija Quadrangle was evaluated by the California Geological Survey for earthquakeinduced landslides and liquefaction potential (CGS, 2003). No direct physical properties for the Matililja Sandstone were listed. CGS assumed a phi angle of 38 degrees, but no cohesion value was listed. For a $1.5: 1$ slope (66% grade), the earthquake induced landslide hazard was considered medium. The CGS estimated that the quarry area has a 10 percent chance in 50 years of experiencing a PGA of 0.51 to 0.53 g (firm rock conditions).

Groundwater

The quarry is on the side of a steep hill. No springs are known in the surrounding hillside. We did not observe damp zones in the quarry rock exposures or indications of historic water flow from the rock faces. The geologic setting of the quarry indicates that it is not susceptible to liquefaction.

The term "saturated zone" or groundwater table is commonly applied to soils and sedimentary basin fill material in which there is a porous, granular matrix (silt, sand, gravel) where water can fill open, interconnected pores. The sandstones are somewhat porous but do not have a sufficiently open pore structure that would allow the development of a widespread "saturated zone". Groundwater flow through pores or microfractures within the intact rock mass is considered minimal. The primary flow paths are through the joints and fractures (a dual porosity model).

There is likely deep groundwater (below the elevation of the North Fork of the Matilija stream), but there is no indication of a long-term groundwater table in the quarry area at elevations that would affect slope stability. The majority of rainfall seeps into the ground. It flows in unsaturated conditions though the saprolite and then into joints within bedrock. Temporary, localized perched water tables likely develop. They cause rock falls of all sizes, but no largescale landslides have occurred. Large rock falls occur during heavy rains but not during the dry season. For this reason, groundwater was not included within the slope stability models.

Historic Stability Evaluation

The previous slope stability report was issued on July 25, 1988, by Pacific Materials Laboratory (hereinafter referred to as PML), their file no. 88-6253-3. At that time, the disturbed area was about 3 acres, and a steep rock cut ($\sim 0.8: 1$ slope, with a maximum height of ~ 285 feet) had been made at the lower northwest corner of the quarry (adjacent to the north end of the current bench 1). That face still exists and has not been significantly modified by the current operator. The PML report evaluated the potential slope stability of "future rock quarry areas" (PML, p. 2). Quarried slopes existing at the time were not evaluated.

PML measured the orientation of 157 joints and plotted the joint data on a stereonet (PI diagram, Figure 3) and contoured the data with a 1 percent counting circle. They identified three primary joint sets (Table 1) and several minor joint sets. All their data appears to have measured uphill of the current bench 2 . Their geologic map suggests that little joint data was collected from cuts/exposed rock within areas that had been mined.

Table 1 Primary joint sets identified in the PML report

| Set Number | Dip bearing | Strike and Dip |
| :---: | :--- | :---: |
| 1 | $110 / 35 S W$ | N70W 35SW |
| 2 | $104 / 44$ SW | N76W 44SW |
| 3 | $118 / 37 S W$ | N62W 39SW |

PML indicated that these joint sets were systematic, had a spacing of 1 to 5 feet, and were traceable for 5 to 75 feet. They used the first two joint sets in their slope stability analysis.

PML performed unconfined compressive strength tests on three sandstone samples. The unit weight of the samples varied from 157.2 to 159.7 pcf and the UCS varied from 14,649 to 16,164 psi ($\sim 2,000,000 \mathrm{psf} / \sim 96 \mathrm{MPa}$)

PML performed direct shear tests on joints in four sandstone samples. Each sample was tested under saturated conditions at confining loads of 1000 , 2000, and 4000 psf. The joint friction angles varied from 48 to 67 degrees and cohesion was 0 , except for one sample that had a cohesion of $500 \mathrm{pcf}($?). This sample had the largest friction angle (67 degrees).

Based on their analysis, PML believed that the critical stability factor was translational failure along persistent rock joints. In their slope stability analysis, they assumed that joint set numbers

1 and 2 (Table 1) extended the full height and width of the slope (cutting across the siltstone beds), creating two potential planar failure surfaces along which translational failure could occur (35 and 44 degrees). Material properties assigned to these potential failure surfaces were $\mathrm{C}=0$, and a friction angle (Phi) of 48 degrees. They ignored effects of the siltstone beds and they did not evaluate non-planar failure mechanisms. They modeled the failure surfaces separately, ignoring cross-cutting effects of the two joint sets. They placed the joints at critical locations in the cross sections. It is not known if joints were actually mapped at those locations.

They modeled four slope profiles (from north to south): H-K, D-G, A-C, and L-M. Table 2 is a summary of the modeling results for each cross-section.

Table 2 Results of PML slope stability analyses. All models used C=0, Phi $=48$, rock unit weight of 158 pcf , and dry conditions (no water)

Section Joint Dip FS (Factor of Safety)

| H-K | 35 | not modeled |
| :--- | :--- | :--- |
| H-K | 46 | 1.07 |
| D-G | 35 | 1.59 (two depths modeled-same FS for each depth) |
| D-G | 44 | not modeled |
| A-C | 35 | not modeled |
| A-C | 44 | 1.15 (three depths modeled-same FS for each depth) |
| L-M | no failure surfaces modeled | |

Profiles D-G and A-C are adjacent to each other and are semi-parallel. It appears that profile DG was used to model the 35 degree failure surface and profile A-C was used to model the 44 degree failure surface. On their 1994 maps, cross-section T (on the map) appears to be the same as cross-section A-B in the 1988 report, and cross-section J (on the map) appears to be the same as cross-section H-K in the 1998 report. Both assumed failure surfaces shown on the 1994 maps dip at 44 degrees, but the assumed failure surface F is shallower than the assumed failure surface C.

Their stability analysis of section $\mathrm{H}-\mathrm{K}$ is misleading. This cross-section modeled the stability of undisturbed ground just north of the quarry. The FS was 1.07. This indicates that the slope is marginally stable and could fail at any time. This is correct, because the undisturbed ground in this area is failing. However, only the rock near the ground surface is failing, and it is failing with a toppling mechanism with movement to the north away from the quarry (out of the plane of the cross-section). There is no failure (actual or incipient) along persistent joint surface as shown in the model. The large rock face just south of this cross-section is still there, and no persistent, continuous joints or global failure are visible.

PML made a fundamental assumption: that joint surfaces extend both across and up the slope as single, continuous features. For their modeling purposes, they assumed that both 35 and 44 degree joints dipped out of the slope at a specific location. They knew that joints with these orientations occurred throughout the quarry face and that the assumed failure surfaces shown on
their cross-sections were just one of many quasi-parallel joints that existed both above and below their assumed failure surfaces. There was nothing unique about their assumed failure surfaces.

We observed similarly orientated joints, but those joints are not persistent. They did not extend long distances either up or cross-slope. Cross-slope, the joints are confined to one or two beds (in the range of 3 to 10 feet wide). The up-slope length can be much longer (up to 50-100 feet) but most are much shorter. Instead of there being widespread planar surfaces (as assumed by PML), there are numerous shorter, discontinuous joints separated by intact rock bridges. These rock bridges provide additional support that increases rock slope stability.

PML recognized the effect that these joints might have on the quarry slope stability, but techniques were not available at that time to allow them to evaluate slope stability in a structurally complex, jointed rock mass. Their analyses were done in 1988 with a combination of hand calculations and a simple Fortran/Basic computer program. They preformed the only analyses they could at the time, which was a simple, planar failure analysis. They recognized the limitations of their analysis and their modeled joint surfaces were always clearly marked "assumed geologic failure planes".

The PML slope stability analysis is a friction angle analysis ($\mathrm{C}=0$). If the friction on the joint surface is larger than the joint dip, no movement will occur on the joint. The greater the joint friction angle (with respect to the joint dip), the greater the FS. PML assumed a joint friction angle of 48 degrees. This is why the FS for a 35 degree joint dip is larger than the FS for a 44 degree joint dip. It also means that there is little margin for error in estimating the joint friction angle. Small variations in the joint friction angle when it is near to the joint dip can cause the calculated FS to quickly go to 1 or less.

Slope Stability Considerations

The final quarry will have a triangular shape, with the upper point of the final quarry being at the high point (about 1900 foot elevation) and the base at about 1100 foot elevation. The triangular shape of the quarry means that the final reclaimed rock slopes will have a variable height that ranges from about 200 feet to about 650 feet with from 4 to 20 benches. The 1994 plans stated that benches will be 10 feet wide with bench faces having a 30 foot maximum height and a maximum slope of 45 degrees (1:1). The overall slope cannot exceed 1.5 to 1.

Potential rock slope failure modes include:
Raveling, rock falls;
Structural failure along geologic discontinuities (joints, faults, and active-passive wedges); Rock mass controlled - failure through intact rock or across the rock mass fabric;
Toppling, and composite modes, involving two or more of the above.

Raveling

Raveling is the widespread degradation of a rock slope face by progressive, long-term loss of smaller sized material. This material eventually collects at the base of the slope in debris piles. There is a gradation between raveling, rock falls, and structurally controlled failures. In this report, we restrict the term raveling to the random, widespread loss of smaller sized material (a few inches to a few feet) throughout a slope face over time.

We observed raveling throughout the slope face. Raveling was common in exposed siltstone beds. The fallen material ranged from less than an inch to several feet in size, with the majority of the material appearing to be under a foot in size. The fallen material was angular and did not appear to roll long distances. The current condition of the face could provide a reasonable estimate of the future raveling potential of the final quarry slopes.

Structural Failure

Structural failures are small to larger-scale failures such as wedge and planar failures along existing discontinuities (joints and faults) rather than through the rock mass itself. Long-term raveling of a weak zones within saprolite can leave wedge-shaped scars that mimic structural wedge failures, but this concentration of raveling are not be considered a structural failure for the purposes of this report.

PML measured and plotted over 150 joint measurements, Figure 3. The raw data is not available. We spot measured joints throughout the quarry and observed the same primary joint sets that PML did. The data indicate that the joint/cut face orientation will be conducive for planar and wedge failures. A stereonet analysis (such as the PML graph) is only a geometric analysis of possible wedge failures. It does not provide information about factors of safety or probabilities of failure. Key factors such as joint persistence, spacing, or material properties cannot be included in a stereonet analysis. The existing data (PML and others) is a subset of the overall joint population. That data was contoured, but the contours are not statistically significant. It would require a much larger number of joints measurements (700 or more) to allow a statistical evaluation of joint sets.

On cut slopes steeper than about 33 degrees (1.5 to 1) in Domain A, wedge and block failures will occur in the sandstone beds. These types of failure are typically confined to one or two beds, and the size of the failure will be related to bed thickness. The siltstones fail by raveling. The sandstone beds in Domain C are thick with few siltstone beds. We did not observe noticeable wedge or planar failures in Domain C. An equipment operator indicated that it was difficult to pull blocks from a fresh, blasted sandstone face. We did not observe large scale structural failures in the quarry. The observed small-scale/size failure style is consistent with low joint persistence.

We reviewed the joint data for the potential for toppling failure but did not perform a specific toppling analysis. The orientation of the beds with respect to the quarry face is not conducive to toppling failure (the quarry face is perpendicular to the strike of the beds). Naturally occurring toppling failure may occur in undisturbed ground north of the at the lower part of the quarry
(Photo 3). The upper sandstone beds appear to topple north, away from the quarry. This movement is not related to quarrying activities. Indications of this movement were mapped as an extension fracture zone on the PML map. It is possible that the apparent toppling is related to structural deformation, and is not related to near-surface gravity induced movement.

Rock Mass Failure

In this failure mode, the rock mass fails along circular or quasi-circular paths through intact rock or across the jointed rock mass, not along discontinuities. In this failure mode, the rock mass is evaluated using Mohr-Coloumb (MC) parameters derived from a Hoek-Brown (HB) analysis. Slope stability was evaluated using conventional Limit Equilibrium Method (LEM) analysis. This analysis assumes that the rock behaves as a homogeneous, isotropic mass even though the rock contains numerous, random, intersecting joints. When modelling rock slopes, the phi and cohesion values are estimated, average, non-directional parameters and we will refer to these as equivalent parameters. Depending on the number and nature of the discontinuities, intact rock pieces will translate, rotate, or crush in response to stresses imposed on the rock mass. The conditions for circular failure are more satisfied in heavily-jointed rock masses.

GSTABL7 was used to evaluate the Factor of Safety (FS) for various slope orientations and material properties. We performed both static and pseudo-static (seismic) slope evaluations. Bishop's method of slices was used to evaluate circular failure modes. We used a PGA of 0.53 g to evaluate slope stability for seismic loading (pseudo-static analysis).

Under the Uniform Building Code (UBC), the minimum static FS for slopes where human occupancy is planned is 1.5 , and 1.1 for pseudo-static conditions. Based on the use of the site after reclamation as open space, with no engineered structures or concentrated public access, we propose that a static FS between 1.3 and 1.5 is adequate for the proposed open space end use. Table 3 lists the significance of various Factors of Safety according to Sowers (1979, p. 587).

Table 3
Significance of the Factor of Safety (Sowers, 1979, p. 587)

| Factor of Safety | Significance |
| :---: | :---: |
| Less than 1.0 | Unsafe |
| 1.0 to 1.2 | Questionable safety |
| $1.3-1.4$ | Satisfactory for cuts and fills |
| $1.5-1.75$ | Safe for dams |

For LEM stability evaluation purposes, a single rock type (sandstone) was used in the stability analyses. The soil and saprolite layers were ignored in the analysis because they are either too thin or localized to have a significant effect on global slope stability. We do not know the thickness of the saprolite above the existing cuts. If a thick (> 50 feet) saprolite layer is encountered, that layer would have to be individually evaluated for local stability.

The final quarry shape will be triangular in shape with the peak of the triangle being at the highest elevation. This means that slope length is dependent on where the slope profile in defined. In this study, the longest/highest slope was modeled (approximately at cross-section A
in the 1988 PML report, cross-section J in the 1994 plans, and cross-section A in the 2011 plans). If this slope is stable, the shorter slopes should also be stable (with respect to a LEM analysis). For the most part, the undisturbed ground surface adjacent to the top of the quarry slopes uphill from the quarry. It appears that all spoils will be stored within the quarry, not above the top of the quarry.

Three general rock types (Domains A, B, and C) are exposed in the quarry. It appears that the highest slope will be cut in Domain A (interbedded sandstones and siltstones). The beds in all domains strike quasi-perpendicular, out of the quarry face. In Domain A, sandstones make up roughly more than about 70 percent of the unit (the percentage decreases from north to south). Domain C is a massive sandstone unit, and sandstone appears to make up more than 80 to 90 percent of the unit. Domain B contains 70 to 90 percent siltstone, depending on location.

In the LEM analysis, we modeled Domain A. The overall mechanical strength of the units in Domain C is greater than those in Domain A because of the lack of siltstones and greater joint spacing. If Domain A is stable, Domain C should also be stable. Domain C was not modeled. The natural slope of the siltstones is currently about 1.5:1. We did not observe obvious slope failures in Domain B and none have been reported in previous studies. Since the final slopes are projected to be 1.5:1, the existing siltstone slopes should be stable from a global slope stability perspective.

Table 4 lists the various sandstone rock mass parameters determined for Domain A. These parameters are based on data collected in the quarry.

Table 4: Sandstone rock mass parameters ${ }^{2}$.
RQD $=40$ to 60 (based on scan line measurements)
GSI = 40 to 50 (good quality; Hoek and Brown [1997, table 5] or Marinos and Hoek, [2000, table 9])
($\mathrm{Mi}=17 \pm 5$, from Hoek [2000, table 11.3] or Cai [2010])
Rmi $=3$ to 5 (high)
$\mathrm{RMR}_{\text {basic }}=68$ to 78 (good)
SMR $=30^{3}$ (bad).
Duran and Douglas (2000) compiled slope height verses slope angle charts for rock slope correlated with GSI and RMR values (their figure 4a). For a 200 meter high slope ${ }^{4}$ and a GSI of 30 to 40 , the chart shows that both benched slope angles (overall slope dip of ~ 45 degrees [1:1]

[^6]and overall slope dip of ~ 39 degrees [1.5:1]) would be stable. These charts are preliminary and only provide a general guide to slope stability. In the paper, there is no discussion about groundwater or what 'moderate pressure' means (their figure 4b).

Table 5 lists the initial strength properties used in this analysis. The rock slope was analyzed by the generalized Hoek-Brown (HB) strength relationships using the program RocLab (RocScience, 2007). The HB strength relationship uses various parameters (GSI, mi, uniaxial rock compressive strength, jointing parameters) to determine a strength envelope for the jointed rock mass. Then based on the stresses applied to the slope (height dependent), equivalent MohrCoulomb (MC) phi angle and cohesion values were calculated (Hoek, et al, 2002). The PML report measured the unconfined compressive strength of the sandstones at about 15000 psi ($\sim 2,000,000 \mathrm{pcf}$). Our Schmidt hammer evaluation suggested that the unconfined compressive strength (USC) was about half this value ($\sim 1,000,000$). We used the lower USC value in our sandstone analysis to be conservative. The Schmidt hammer based USC for the siltstone is estimated to be in the range of 1000 psi (144,000 pcf).

Other parameters used in the HB evaluation were either developed from data from the PML report, measured during our fieldwork or from tables/diagrams provided in Hoek and Brown (1997 and 2000). Hoek (1983, p. 11) discusses the parameters ${ }^{5}$. There are two sets of initial MC values in Table 5. Both assume 100 percent of either sandstone or siltstone. The high sandstone values were calculated for a full slope failure (650 foot disturbed height) and the low values were calculated for a bench failure (200 foot height). The high and low siltstone values are based on 200 and 100 foot slope heights.

Table 5
Assumed Initial Shear Strength Properties
The GSI values in bold were used as the initial starting values
The Mohr-Coulomb values are equivalent values only.

| Material
 Type
 (Layer) | MC Values
 low slope | MC Values
 high slope | Hoek-Brown
 Strength values | Unit
 Weight
 (pcf) |
| :---: | :---: | :---: | :---: | :---: |
| Sandstone | 200 ft height
 $11 \mathrm{ksf}\left(\mathrm{C}_{\text {eqv }}\right)$
 $51^{\circ}\left(\phi_{\text {eqv }}\right)$ | 650 ft height
 $26 \mathrm{ksf}\left(\mathrm{C}_{\text {eqv }}\right)$
 $45^{\circ}\left(\phi_{\text {eqv }}\right)$ | UCS $=1,000,000 \mathrm{psf}(\sim 48 \mathrm{MPa})$
 $\mathrm{GSI}=\mathbf{4 0 - 5 5}$
 $\mathrm{Mi}=17$ | 150 |
| Siltstone | 100 ft height
 $2.1 \mathrm{ksf}\left(\mathrm{C}_{\text {eqv }}\right)$
 $30^{\circ}\left(\phi_{\text {eqv }}\right)$ | 650 ft height
 $4 \mathrm{ksf}\left(\mathrm{C}_{\text {eqv }}\right)$
 $18^{\circ}\left(\phi_{\text {eqv }}\right)$ | UCS $=144,000 \mathrm{psf}(\sim 4.8 \mathrm{MPa})$
 $\mathrm{GSI}=\mathbf{2 5}-30$
 $\mathrm{Mi}=7$ | 130 |
| Fill | $\mathrm{C}=0$
 $\mathrm{Phi}=35^{\circ}$ | N / A | 120 | |

[^7]
LEM Results

Two slope configurations were modeled. The first was 750 foot high total slope (containing a disturbed slope height of 650 feet) with an overall 1.5:1 slope. This included the proposed benches (10 ft wide) and cut slopes (30 height, $1: 1$ slope). The second included various face angles in 100 and 200 foot high slopes.

In both configurations, the cross-section extended above the highest elevation of interest. Then, a series of stability analyses were run with varying rock material values to evaluate overall slope stability. The geologic/structural complexities of this site make it impossible to test for or model the actual rock properties/geometry. Instead, representative rock mass properties were initially determined, then an evaluation of a variation of those properties was made.

The intent was to evaluate a range of material values to find lower-bounds for the material values that would meet the required FS. If the lower-bound material values that met the minimum FS became unrealistic (reducio ad absurdem), then reasonable, higher range material values would be acceptable. This method also provides an estimate of the robustness of the strength values. Both C and Phi values were varied. This method follows after Hamman and Curran (2009) and Stewart (2000).

Full Slope Configuration Evaluation

The results of our LEM slope stability analyses for the full slope are listed in Table 6. The LEM results (slope configuration, material properties, and critical failure surfaces) are shown in Figures 4 to 9 . We assumed total stress conditions and groundwater levels were below the base of potential failure surfaces. Static and Pseudostatic Factors of Safety were calculated using a Bishop simplified method. A PGA of 0.53 was used in the pseudostatic evaluation.

Table 6
FS values for 1.5:1 slope.
Overall Slope height is 750 feet

| Value
 Levels | Material properties | | Static
 FS | Pseudostatic
 FS | Figure |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sandstone
 value | UCS $=1,000,000 \mathrm{psf}$
 $\mathrm{GSI}=50$
 $\mathrm{Mi}=17$ | $26000 \mathrm{psf}\left(\mathrm{C}_{\text {eqv }}\right)$
 $45^{\circ}\left(\phi_{\text {eqv }}\right)$ | 4.0 | 3.0 | 4,5 |
| SS-SltSS
 Value | $1,000,000 \mathrm{psf}$
 GSI $=30$
 $\mathrm{Mi}=17$ | $14000 \mathrm{psf}\left(\mathrm{C}_{\text {eqv }}\right)$
 $31^{\circ}\left(\phi_{\text {eqv }}\right)$ | 2.3 | 1.7 | 6,7 |
| Theoretical
 Low SS-
 Slt Values | $400,000 \mathrm{psf}$
 $\mathrm{GSI}=40$
 $\mathrm{Mi}=17$ | $7000(2000) \mathrm{psf}$
 $\left(\mathrm{C}_{\text {eqv }}\right)$ | 2.3 | 1.7 | 8 |
| Siltstone | $44^{\circ}\left(40^{\circ}\right)\left(\phi_{\text {eqv }}\right)$ | (1.6) | (1.1) | 8 | |

The sandstone strength values in Table 6 are for a 100 percent sandstone jointed rock mass. The sandstone-siltstone values are an estimate of a 70-30 percent sandstone to siltstone jointed rock mass. The theoretically low sandstone-siltstone values were used to evaluate lower limit FS for short slopes. The siltstone strength values are for a 100 percent siltstone. In the field, the siltstones are interbedded with sandstones of varying thickness. The sandstones will increase the overall strength of Domain B siltstones.

Figure 10 is a graph of a full slope, FS stability field for Domain A rock types. It is based on a LEM failure analysis. The axes are Phi and C values, and the 1.5 and 1.0 FS lines are plotted. This graph indicates that for a 1.5 to 1 slope, pure sandstone and siltstone-sandstone rock masses will be stable for this slope height. It suggests that the inherent strength of these rocks means that there is a wide range of Phi and C values for which the slope is stable. There are also ranges of Phi and C values that cannot exist for this rock type (a high C, low Phi value range and a low C and low Phi value range). The siltstones have a low FS. This is consistent with field observations. The siltstones form valleys that rarely exceed a 1.5 to 1 slope. It is likely that the natural FS of Domain B is in the range of 1.1 to 1.5

The FS from the PML translational failure analysis ($\mathrm{C}=0$ and Phi $=48$ degrees) plots just below the 1.5 FS line. The PML FS is slightly lower than a FS from the LEM analysis (for a C=0, Phi=48) because the LEM analysis failure surface is slightly curved and longer.

Bench Configuration Evaluation

Several specific slope geometries were evaluated using the SS-Slt material properties.

Figure 11 shows a model of the full slope with a 200 foot high, 0.5 to 1 cut at the toe of the slope. It has a FS of 2 using the SS-Slt material values shown in Table 6.

Figures 12 is a model of a 250 foot high slope with a 150 foot high 0.75 toe cut. This models the existing cut slope at the lower part of the north end of the quarry. The initial slope has a FS of over 3. Figure 13 shows the same slope with a 50 foot high, 1 to 1 toe buttress. The buttress increases the FS of the slope by about 0.03 .

Figures 14 and 15 are models of a 200 foot high slope that has a 1 to 1 slope face. The FS in Figure 14 is 4.1 for SS-Slt material values. The FS in Figure 15 is 1.85 using theoretically very low SS-Slt material values.

Figures 16, 17, and 18 are models of the a 75 foot high slope that has a 0.7 slope face. Theoretically very low SS-Slt material values are used in these models. The FS for Figure 16 is 2.28. Figure 17 is a model of the same slope with a 50 foot toe buttress. The buttress increases the FS about 0.25 . Figure 18 is a model of the same buttress, but the modeling limits were restricted to the buttress. It shows that the FS of the buttress itself is 1.23 .

These models suggest that the existing rock can sustain cuts with slopes steeper than 1.5 to 1 . The addition of a structural buttress adds little to the overall slope stability. In fact, the buttress will have the lower FS than the adjacent rock cut. Unless extensive sub-surface drainage systems are installed in a buttress, the buttress could have a much higher failure probability that the rock slopes.

Composite Mode Failure

A composite mode failure assumes that there is a series of persistent, high-angle joints/beds that dip parallel to the slope. The failure couples movement along appropriately orientated, persistent joint/bed planes with failure across intact rock between the joints/beds. This failure method is well known in bedded sedimentary units (Aydan et al, 1992; Stead and Eberhardt, 1997) where beds dip out of a slope (bedding plane failure). This is what PML modeled.

This failure mode is based on a specific slope-joint/bed geometric relationship. The joints/beds dip 10 to 20 degrees steeper than the slope face and the joint/bed strike is ± 20 degrees of the slope face strike. Many joints in the Ojai quarry meet this criteria. The criteria also requires individual joints to extend hundreds of feet (for a slope the size of the Ojai quarry). We did not observe any indication that widespread persistent joints exist in the Ojai quarry. Bedrock has well defined bedding, but bedding strike is perpendicular to the quarry face.

With persistent joints, a block search method can be used in the LEM models. However, the lack of persistent joints means that the strength reduction technique discussed in the previous section simulates the effect of numerous small joints.

CONCLUSIONS

It is our opinion that the planned reclamation slope configurations (1.5:1) will result in permanent slopes which will have an acceptable stability for the proposed open space end use. The slopes stability analyses indicate that using reasonable lower bound strength values for the various rock and soil types, the static factors of safety exceed 1.3. Since the strength values used in the analyses are considered to be representative strengths, we believe that the calculated Factors of Safety (in the 3 to 4 range for global stability) are acceptable. These high FS values suggests that the inherent strength of these rocks is large enough that there is a wide range of strength (Phi and C values) for which the slope is stable and our analysis is robust. The siltstone beds in Domain B likely have a long-term FS of 1.1 to 1.5. This is consistent with field observations. If the long-term intended use of the reclaimed site changes from open space use, performing additional studies relating to in-situ rock and soil strengths may be warranted to better define the final, as-constructed Factors of Safety.

The intact rock has a high strength, and local face stability will be controlled by joint patterns. Small-scale wedge failures should be expected to develop on the cut rock faces. Based on field observations and measured joint orientations, we do not anticipate large-scale wedge failures (50 to 100 feet in size). If slope parallel, persistent joints are encountered as quarrying proceeds, large-scale failure (wedge or planar) of benches could occur.

It appears that if a soil buttresses is used to provide structural support for a cut, it will only provide a minor increase in slope FS. Unless subsurface drainage provisions are installed in the buttresses, the buttress will have a much lower FS that the rock slope itself and will tend to fail before the rock slopes fail.

This was a global evaluation, based on estimated rock properties for a benched, overall 35 to 45 degree slope. The slope configurations were provided by the client and supporting data were from publicly available sources and a limited field investigation and mapping program. No physical rock testing/analysis was preformed. If slope angle variations are desired, they can be individually evaluated when the excavation nears the final quarry boundary. It is likely that rock properties would have to refined either by testing or additional studies. Such an evaluation would have to be performed by appropriately licensed professionals experienced in rock slope evaluation and analysis.

LIMITATIONS

This study and conclusions assume that the material properties and the nature of bedrock and the observed orientations of joints and shears on the existing quarry slopes described in this report are representative of the actual conditions on the proposed final cut slopes. This study assumes that groundwater conditions will remain as observed and will have no impact on the overall stability of the final slopes.

As quarry excavation progresses, we recommend that rock and groundwater conditions should be monitored to confirm the assumed conditions. We also recommend that joint/fault mapping be conducted as needed.

This analysis was based on the materials observed in the field and listed in Table 1. If shear zones or additional rock types are encountered, the effect of these units on both interim and final slope stability should be evaluated in a timely manner. This analysis is not valid for other rock types or other areas.

The Public Resources Code (PRC), Title14, Article 9, Section 3704, states that lead regulatory agencies shall require formal slope stability investigations whenever design-slopes approach or exceed critical gradient. Critical gradient is defined as the maximum unsupported slope which can be maintained under the most adverse conditions. The term "most adverse conditions" is not an engineering term and it is not defined in the regulations. Our calculations were performed using conservative, reasonable assumptions about adverse natural conditions. The final design slopes are considered not to approach or exceed the critical gradient.

The express purpose of this slope stability investigation is to provide for public safety. The regulations do not require that the final design slopes be brought into compliance with Uniform Building Code (UBC) requirements for engineered slopes.

The analysis, conclusions, and Factors of Safety are not valid for evaluation of working slopes.
The analysis, conclusions, and Factors of Safety determined in this report are based on the final slope geometries that were provided to us by Mosler Rock Ojai Quarry. If changes are made to the final slope geometry, then the conclusions and recommendations presented in this report should be considered invalid by all parties. We should be allowed to review and prepare written responses to comments to this report or to changes in the final slope geometry. If necessary, we will prepare modified recommendations after a review of the proposed changes. Additional field and laboratory testing work may be required for us to develop any modifications to our recommendations.

This report was prepared at the request of, and for the exclusive use of the addressee. Release to any other company, concern, or individual is solely the responsibility of the addressee. We have employed generally accepted geological, engineering geology, and civil engineering procedures for this type of study. Our observations, professional opinions and conclusions were made using that degree of care and skill ordinarily exercised, under similar conditions, by engineering geologists, and civil engineers practicing in this area at this time. The opinions and/or recommendations presented in this report could be subject to revision should additional information become available. Norfleet consultants expressly denies any third party liability arising from the unauthorized use of this report.

The opinions and/or recommendations presented in this report could be subject to revision should additional information become available. The timing and location of events reported to us by the owners or their representatives were not independently confirmed.

Yours Truly,
S.figure

NORFLEET CONSULTANTS
Dr. Sands Figuers, PE, CEG, CHG, PGp
Principal Geological Engineer

REFERENCES

Anand, R.R. and Paine, M..; 2002; Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration; Australian Journal of Earth Science, v. 49, p. 3-162

Arel, E. and Onalp, A.; 2004; Diagnosis of the transition from rock to soil in a granodiorite; Journal of geotechnical and geoenvironmental engineering, v. 130, no 9, p. 968-974

Aydan, O., Shimizu, Y., and Kawamoto, T.; 1992; The stability of rock slopes against combined shearing and sliding failures and their stabilization; in: Asian Regional Symposium on Rock Slopes; Oxford and IBH Publishing; p 203-210

Basu, A. and Aydin, A.; 2004; A method for normalization of Schmidt hammer rebound values; Inter. Jour. Rock Mechanics and Mining Sci; v. 41, p 1211-1214

Cai, M.; 2010; Practical estimates of tensile strength and Hoek-Brown strength parameter mi of brittle rocks; Rock Mech Rock Engineering; v.43, p. 167-184

Colak, K. and Unlu, T.; 2004; Effect of transverse anisotropy on the Hoek-Brown strength parameter mi for intact rock; International Journal of Rock Mechanics and Mining Sciences; v. 41, p. 1045-1052

Dearman, W.R.; 1976; Weathering classification in the characterization of rock: a revision; Int. Assoc. of Engineering Geology Bulletin, v. 13, p.123-127

Duran, A. and Douglas, K.; 2000; Experience with empirical rock slope design; in: GeoEng2000, An International Conference on Geotechnical and Geological Engineering; v. 2; p. 41-46

California Geological Survey; 2003; State of California Seismic Hazard Zone Reports, Matilija Quadrangle, 60 pp.

Dibblee, 1982, Geologic map of the Ojai Quadrangel, USGS OFR 82-75

Graham, R. and Rossi, A.; 2010; Rock to regolith conversion: producing hospitable substrates for terrestrial ecosystems; GSA Today, v. 20, no. 2, p. 4-9

Gu, D.X., Tamblyn, W., Lamb, I., and Ramsey N.; 2008; Effect of weathering on strength and modulus of basalt and siltstone; in: 42nd US rock Mechanics Symposium 2008 (AMRA), San Francisco CA; v. 2, p. 725-731 (paper ARMA 08-207)

Hack, R. and Huisman, M.; 2002; Estimating the intact rock strength of a rock mass by simple means; in: Engineering Geology for Developing Countries - Proceedings of the 9th Congress of the International Association for Engineering Geology and the Environment, Durban, South Africa (eds: van Rooy and Jermy); p. 1971-1977

Hammah, R.E. and Curran, J.H.; 2009; It is better to be approximately right than precisely wrong: why simple models work in mining geomechanics; in: 43rd U.S Rock Mechanics Symposium; paper no. ARMA 09-

Hoek, E.; 1983; Strength of jointed rock masses; Geotechnique; v. 33, no. 3, p. 187-223
Hoek, E. and Brown, E.T.; 1997; Practical estimates of rock mass strength; International Journal of Rock Mechanics and Mining Sciences; v. 34, no. 8, pp 1165-1186

IAEG; 1981; Rock and soil description for engineering geological mapping, Int. Assoc. of Engineering Geology bulletin; v. 24, p. 235-274

Irfan, T.Y. and Powell, G.E.; 1985; Engineering geological investigations for pile foundations on a deeply weathered granitic rock in Hong Kong; Bull of the Inter. Assoc. of Engineering Geology, vol. 32, p. 67-80

ISRM; 1981; Basic geotechnical description for rock masses; International Jour. Rock Mechanics, Mining Sciences, and Geomechanics; v. 18, p. 85-110

Kelessidis, V.C.; 2009; Need for better knowledge of in-situ unconfined compressive strength of rock (UCS) to improve rock drillability prediction; 3rd AMIREG International Conference (Assessing the footprint of resource utilization and hazardous waste management); p. 212-219

Marinos, P. and Hoek, E.; 2000; GSI: a geologically friendly tool for rock mass strength estimation; in: GeoEng2000, and International Conference on Geotechnical \& Geological Engineering; v. 1, p. 1421-1440

Pinto da Cunha, A. (editor); 1993; Scale effects in rock masses 93; Balkema.
Read, S., Perrin, N.D., and Richards, L.; 2005; Evaluation of the intact properties of weak rocks for use in the Hoek-Brown failure criterion; in: Alaska Rocks 2005, 40th U.S Rock Mechanics Symposium, vol 3, paper no. ARMA 05-694

Read, S., Richards, L. and Cook, C.; 2003; Rock mass defect patterns and the Hoek-Brown Failure criterion; in: 10th ISRM International Conference on Rock Mechanics, v. 2, p. 947-945

Saroglou, H. and Tasiambaos, G.; 2008; A modified Hoek-Brown failure criterion for anisotropic intact rock; International Journal of Rock Mechanics and Mining Sciences; v. 45; p. 223-234

Sliter, W.V. and McGann, M.; 1992; Age and correlation of the Calera Limestone in the Permanente Terrane of northern California; USGS open file report 1992-0306; 27 pp.

Stead, D. and Eberhardt, E.; 1997; Developments in the analysis of footwall slopes in surface coal mining; Engineering Geology, v 46; p. 41-61

Stewart, R.A.; 2000; Dam Risk Management; in: GeoEng2000, and International Conference on Geotechnical \& Geological Engineering; v. 1, p. 721-748

Suorineni, F.T., Chinnasane, D.R., and Kaiser, P.K.; 2009; A procedure for determining rocktype specific Hoek-Brown brittle parameter s; Rock Mech. Rock Engineering; v. 42, p. 849-881

Photo 1: The northern part of the quarry, Domain A (looking north).

Photo 2: The southern part of the quarry (looking east). Siltstone beds of Domain B form the valley in the upper part of the photograph. Domain C sandstones are being mined in the area to the right.

Photo 3: Sandstone beds at the northern end of the quarry (Domain A). There are thin siltstone beds between most of the sandstone beds. Even though jointing is pervasive, few joints extend across multiple beds.

Photo 4: The siltstone beds in Domain B. Note the interbedding of siltstone and sandstone.

Photo 5: Thick sandstone beds in Domain C (at the south end of the quarry). This area was blasted. Note the wider spacing of the joints. The valley on the left is likely a fault zone. It is unknown if it is a bedding plane fault.

Photo 6: The triangle zone at the top of Domain A. This is the natural condition of the rock (structurally fractured). It has not been blasted.

Photo 7: The fault plane at the top of the quarry. This is a naturally occurring gully. It has not been mined. The triangle zone (Photo 6) is located just to the left of this photograph.

Photo 8: A fault zone in the upper part of Domain A (triangle shape). The Triangle Zone (Photo 6) is located up-slope of this area.

Photo 9: A typical weathering profile above the sandstones in Domain A.

Photo 10: Jointing patterns in Domain A sandstones.

Photo 11: A joint surface in Domain C sandstones.

Photo 12: Jointing patterns in thicker sandstone beds in Domain A.

Photo 13: The siltstone bed on the other (west) side of Rt 33 from the quarry. This bed is more than double the thickness of the siltstone bed in the quarry. This may be the result of structural thickening. The sandstones on the right have rotated about 40 degrees counter-clockwise with respect to the sandstones on the left. The sandstones on the left have a strike and dip similar to the sandstones in the quarry.

)

The PML plot of joint data on a stereonet (poles to the planes). The approximate bearing of the quarry face ($\mathrm{F}, \sim \mathrm{N} 40 \mathrm{~W}$) and the strike of bedding ($\mathrm{B}, \sim \mathrm{N} 40 \mathrm{E}$) are shown. Note that the strike of bedding is close to perpendicular with the quarry face, and the strike of most joints is within 20 degrees of parallel to the quarry face.

Norfleet Consultants

Ojai quarry
4/2011 08:48PM

This graph illustrates the relationship between the sandstone rock properties and the Factor of Safety for failure on a 1.5 to 1 slope. A Hoek-Brown analysis (GSI) was used to detemine the sandstone strength curve. Equivalent Mohr-Coloumb properties (C and Phi) were then calculated for 850 and 200 foot high slopes from that curve. Using the MC values, a series of Bishop stability analysis were run to determine the 1.5 and 1.0 FS limits. An estimated range of siltstone MC properties is shown in the lower left side of the graph. The estimated SS-SItst value is a reduction of the sandstone MC values to take into account interbedding of sandstones and siltstones.

This diagram is only valid for the evaluated bedrock/face orientations and rock conditions at the Ojai quarry as discussed in this report.
Ojai 0.5:1 toe cut e:la - job files\111882- ojai quarry\slope stabilitylslope calcs planar profileslorig slope with toe cut $200 \mathrm{ft} _5$ to 1.pl2 Run By: Username $\quad 12 / 5 / 2011$ 11:43PM

Safety Factors Are Calculated By The Modified Bishop Method

$$
\text { Ojai quarry } 250 \text { slope with } 0.75 \text { cut }
$$

Ojai quarry 250 slope with 0.75 cut

Ojai quarry

Figure 15. LEM analysis of 200 ft high slope in SS-SIt with a 1 to 1 face and theoretically low strength.

Ojai quarry

Ojai quarry

The failure limts were restricted to the buttress.

APPENDIX III RECLAMATION PLAN / GEOTECHNICAL MAP AND CROSS-SECTIONS

reclamation notes

2. All ACCCSS ROAD DRANAGE CANAL/OTCOHES SHALL BE CONSTRUCTED ON EXSTNE

5.

SEE SHEET 1 FOR SITE PLAN SEE SHEET 4 FOR TYPICAL DETAILS

WORK PROCEDURE ON EXISTNG UNSTABLE SLOPE

[^0]: Factor of Safety *** 3.529 ***

[^1]: Factor of Safety

    ```
    *** 3.489 ***
    ```

[^2]: Factor of Safety

    ```
    *** 3.527 ***
    ```

[^3]: Factor of Safety
 *** 3.581 ***

[^4]: Factor of Safety *** 3.584 ***

[^5]: ${ }^{1}$ Saprolite traditionally refers to weathered rock that has lost much of its mechanical strength, but retains its original rock fabric. The primary minerals have altered and clay has developed (Anand and Paine, 2002, p 16-20; Graham and Rossi, 2010). Saprock is included within our usage of Saprolite. We use the term in this study to describe deeply weathered rock that contains sands and sandstone corestones.

[^6]: ${ }^{2}$ There is a fundamental difference between the GSI parameter and the other rock mass parameters. The GSI parameter was designed to be used as part of an overall Hoek-Brown strength envelope evaluation. It is not intended to be a stand alone rock mass parameter. It does not include joint parameters except for an estimate of joint sets and spacing. It does not include groundwater or intact rock strength. The other parameters were designed to be stand alone rock mass parameters. Most were designed to evaluate underground workings.
 ${ }^{3}$ SMR is a Slope Mass Rating. This parameter was designed to evaluate a slope for planar and wedge failures. The SMR rating does not take into account joint persistence and provides little information about the potential for global slope instability. Widespread small/localized block and planar failure occur though out the Ojai quarry slope faces.
 ${ }^{4}$ The overall slope has a maximum height of 850 feet (~ 260 meters). The charts are only valid for GSI's between 30 and 40 .

[^7]: ${ }^{5}$ Other papers that discuss these parameters include: Colak and Unlu (2004); Read, Perrin, and Richards (2006); Suorineni, Chinnasane, and Kaiser (2009); Cai (2010); and Saroglou and Tsimabaos (2008). For reference, the UCS of concrete is about 720,000 psf (5000 psi).

